给定t时刻以及之前的所有观测z和输入u,我们的目标是求得当前状态量x的概率分布(belief),即
b e l ( x t ) = p ( x t ∣ z 1 : t , u 1 : t ) bel(x_t)=p(x_t|z_{1:t}, u_{1:t}) bel(xt)=p(xt∣z1:t,u1:t)
在实际使用中,一般将求解过程分为两步,首先求解在t时刻观测前的先验分布,即
b e l ‾ ( x t ) = p ( x t ∣ z 1 : t − 1 , u 1 : t ) \overline{bel}(x_t)=p(x_t|z_{1:t-1}, u_{1:t}) bel(xt)=p(xt∣z1:t−1,u1:t)
然后再根据t时刻的观测通过贝叶斯公式更新先验分布,以得到后验分布,即
b e l ( x t ) = η p ( z t ∣ x t , z 1 : t − 1 , u 1 : t ) b e l ‾ ( x t ) bel(x_t)=\eta p(z_t|x_t,z_{1:t-1},u_{1:t}) \overline{bel}(x_t) bel(xt)=ηp(zt∣xt,z1:t−1,u1:t)bel(xt)
其中
贝叶斯滤波器
最新推荐文章于 2023-12-27 02:14:05 发布
本文详细介绍了贝叶斯滤波器的概念和工作原理,包括先验分布、后验分布的计算,以及马尔科夫假设在其中的作用。通过状态转移概率和观测概率,阐述了预测与校正两个关键步骤,揭示了其与隐马尔科夫模型的关系,并提及在实际应用中如何处理连续状态量的挑战。
摘要由CSDN通过智能技术生成