算法思路
判断平面内点是否在多边形内有多种算法,其中射线法是其中比较好理解的一种,而且能够支持凹多边形的情况。该算法的思路很简单,就是从目标点出发引一条射线,看这条射线和多边形所有边的交点数目。如果有奇数个交点,则说明在内部,如果有偶数个交点,则说明在外部。如下图所示:
算法步骤如下:
- 已知点point(x,y)和多边形Polygon的点有序集合(x1,y1;x2,y2;….xn,yn;);
- 以point为起点,以无穷远为终点作平行于X轴的射线line(x,y; -∞,y);循环取得多边形的每一条边side(xi,yi;xi+1,yi+1):
1). 判断point(x,y)是否在side上,如果是,则返回true。
2). 判断line与side是否有交点,如果有则count++。 - 判断交点的总数count,如果为奇数则返回true,偶数则返回false。
2. 具体实现
在具体的实现过程中,其实还有一个极端情况需要注意:当射线line经过的是多边形的顶点时,判断就会出现异常情况。针对这个问题,可以规定线段的两个端点,相对于另一个端点在上面的顶点称为上端点,下面是下端点。如果射线经过上端点,count加1,如果经过下端点,则count不必加1。具体实现如下:
#include<iostream>
#include <cmath>
#include <vector>
#include <algorithm>
#define EPSILON 0.000001
using namespace std;
//二维double矢量
struct Vec2d
{
double x, y;
Vec2d()
{
x = 0.0;
y = 0.0;
}
Vec2d(double dx, double dy)
{
x = dx;
y = dy;
}
void Set(double dx, double dy)
{
x = dx;
y = dy;
}
};
//判断点在线段上
bool IsPointOnLine(double px0, double py0, double px1, double py1, double px2, double py2)
{
bool flag = false;
double d1 = (px1 - px0) * (py2 - py0) - (px2 - px0) * (py1 - py0);
if ((abs(d1) < EPSILON) && ((px0 - px1) * (px0 - px2) <= 0) && ((py0 - py1) * (py0 - py2) <= 0))
{
flag = true;
}
return flag;
}
//判断两线段相交
bool IsIntersect(double px1, double py1, double px2, double py2, double px3, double py3, double px4, double py4)
{
bool flag = false;
double d = (px2 - px1) * (py4 - py3) - (py2 - py1) * (px4 - px3);
if (d != 0)
{
double r = ((py1 - py3) * (px4 - px3) - (px1 - px3) * (py4 - py3)) / d;
double s = ((py1 - py3) * (px2 - px1) - (px1 - px3) * (py2 - py1)) / d;
if ((r >= 0) && (r <= 1) && (s >= 0) && (s <= 1))
{
flag = true;
}
}
return flag;
}
//判断点在多边形内
bool Point_In_Polygon_2D(double x, double y, const vector<Vec2d> &POL)
{
bool isInside = false;
int count = 0;
//
double minX = DBL_MAX;
for (int i = 0; i < POL.size(); i++)
{
minX = std::min(minX, POL[i].x);
}
//
double px = x;
double py = y;
double linePoint1x = x;
double linePoint1y = y;
double linePoint2x = minX -10; //取最小的X值还小的值作为射线的终点
double linePoint2y = y;
//遍历每一条边
for (int i = 0; i < POL.size() - 1; i++)
{
double cx1 = POL[i].x;
double cy1 = POL[i].y;
double cx2 = POL[i + 1].x;
double cy2 = POL[i + 1].y;
if (IsPointOnLine(px, py, cx1, cy1, cx2, cy2))
{
return true;
}
if (fabs(cy2 - cy1) < EPSILON) //平行则不相交
{
continue;
}
if (IsPointOnLine(cx1, cy1, linePoint1x, linePoint1y, linePoint2x, linePoint2y))
{
if (cy1 > cy2) //只保证上端点+1
{
count++;
}
}
else if (IsPointOnLine(cx2, cy2, linePoint1x, linePoint1y, linePoint2x, linePoint2y))
{
if (cy2 > cy1) //只保证上端点+1
{
count++;
}
}
else if (IsIntersect(cx1, cy1, cx2, cy2, linePoint1x, linePoint1y, linePoint2x, linePoint2y)) //已经排除平行的情况
{
count++;
}
}
if (count % 2 == 1)
{
isInside = true;
}
return isInside;
}
int main()
{
//定义一个多边形(六边形)
vector<Vec2d> POL;
POL.push_back(Vec2d(268.28, 784.75));
POL.push_back(Vec2d(153.98, 600.60));
POL.push_back(Vec2d(274.63, 336.02));
POL.push_back(Vec2d(623.88, 401.64));
POL.push_back(Vec2d(676.80, 634.47));
POL.push_back(Vec2d(530.75, 822.85));
POL.push_back(Vec2d(268.28, 784.75)); //将起始点放入尾部,方便遍历每一条边
//
if (Point_In_Polygon_2D(407.98, 579.43, POL))
{
cout << "点(407.98, 579.43)在多边形内" << endl;
}
else
{
cout << "点(407.98, 579.43)在多边形外" << endl;
}
//
if (Point_In_Polygon_2D(678.92, 482.07, POL))
{
cout << "点(678.92, 482.07)在多边形内" << endl;
}
else
{
cout << "点(678.92, 482.07)在多边形外" << endl;
}
return 0;
}
运行结果如下:
改进空间
- 很多情况下在使用该算法之前,需要一个快速检测的功能:当点不在多边形的外包矩形的时候,那么点一定不在多边形内。
- 判断点在线上函数IsPointOnLine()和判断线段相交函数IsIntersect()这里并不是最优算法,可以改成向量计算,效率应该更高。