判断某点在多边形内——方法一

算法思路

判断平面内点是否在多边形内有多种算法,其中射线法是其中比较好理解的一种,而且能够支持凹多边形的情况。该算法的思路很简单,就是从目标点出发引一条射线,看这条射线和多边形所有边的交点数目。如果有奇数个交点,则说明在内部,如果有偶数个交点,则说明在外部。如下图所示:


算法步骤如下:

  1. 已知点point(x,y)和多边形Polygon的点有序集合(x1,y1;x2,y2;….xn,yn;);
  2. 以point为起点,以无穷远为终点作平行于X轴的射线line(x,y; -∞,y);循环取得多边形的每一条边side(xi,yi;xi+1,yi+1):
    1). 判断point(x,y)是否在side上,如果是,则返回true。
    2). 判断line与side是否有交点,如果有则count++。
  3. 判断交点的总数count,如果为奇数则返回true,偶数则返回false。

2. 具体实现

在具体的实现过程中,其实还有一个极端情况需要注意:当射线line经过的是多边形的顶点时,判断就会出现异常情况。针对这个问题,可以规定线段的两个端点,相对于另一个端点在上面的顶点称为上端点,下面是下端点。如果射线经过上端点,count加1,如果经过下端点,则count不必加1。具体实现如下:

#include<iostream>
#include <cmath>
#include <vector>
#include <algorithm>

#define EPSILON 0.000001

using namespace std;

//二维double矢量
struct  Vec2d
{
	double x, y;

	Vec2d()
	{
		x = 0.0;
		y = 0.0;
	}
	Vec2d(double dx, double dy)
	{
		x = dx;
		y = dy;
	}
	void Set(double dx, double dy)
	{
		x = dx;
		y = dy;
	}
};

//判断点在线段上
bool IsPointOnLine(double px0, double py0, double px1, double py1, double px2, double py2)
{
	bool flag = false;
	double d1 = (px1 - px0) * (py2 - py0) - (px2 - px0) * (py1 - py0);
	if ((abs(d1) < EPSILON) && ((px0 - px1) * (px0 - px2) <= 0) && ((py0 - py1) * (py0 - py2) <= 0))
	{
		flag = true;
	}
	return flag;
}

//判断两线段相交
bool IsIntersect(double px1, double py1, double px2, double py2, double px3, double py3, double px4, double py4)
{
	bool flag = false;
	double d = (px2 - px1) * (py4 - py3) - (py2 - py1) * (px4 - px3);
	if (d != 0)
	{
		double r = ((py1 - py3) * (px4 - px3) - (px1 - px3) * (py4 - py3)) / d;
		double s = ((py1 - py3) * (px2 - px1) - (px1 - px3) * (py2 - py1)) / d;
		if ((r >= 0) && (r <= 1) && (s >= 0) && (s <= 1))
		{
			flag = true;
		}
	}
	return flag;
}

//判断点在多边形内
bool Point_In_Polygon_2D(double x, double y, const vector<Vec2d> &POL)
{	
	bool isInside = false;
	int count = 0;
	
	//
	double minX = DBL_MAX;
	for (int i = 0; i < POL.size(); i++)
	{
		minX = std::min(minX, POL[i].x);
	}

	//
	double px = x;
	double py = y;
	double linePoint1x = x;
	double linePoint1y = y;
	double linePoint2x = minX -10;			//取最小的X值还小的值作为射线的终点
	double linePoint2y = y;

	//遍历每一条边
	for (int i = 0; i < POL.size() - 1; i++)
	{	
		double cx1 = POL[i].x;
		double cy1 = POL[i].y;
		double cx2 = POL[i + 1].x;
		double cy2 = POL[i + 1].y;
				
		if (IsPointOnLine(px, py, cx1, cy1, cx2, cy2))
		{
			return true;
		}

		if (fabs(cy2 - cy1) < EPSILON)   //平行则不相交
		{
			continue;
		}

		if (IsPointOnLine(cx1, cy1, linePoint1x, linePoint1y, linePoint2x, linePoint2y))
		{
			if (cy1 > cy2)			//只保证上端点+1
			{
				count++;
			}
		}
		else if (IsPointOnLine(cx2, cy2, linePoint1x, linePoint1y, linePoint2x, linePoint2y))
		{
			if (cy2 > cy1)			//只保证上端点+1
			{
				count++;
			}
		}
		else if (IsIntersect(cx1, cy1, cx2, cy2, linePoint1x, linePoint1y, linePoint2x, linePoint2y))   //已经排除平行的情况
		{
			count++;
		}
	}
	
	if (count % 2 == 1)
	{
		isInside = true;
	}

	return isInside;
}


int main()
{	
	//定义一个多边形(六边形)
	vector<Vec2d> POL;	
	POL.push_back(Vec2d(268.28, 784.75));
	POL.push_back(Vec2d(153.98, 600.60));
	POL.push_back(Vec2d(274.63, 336.02));
	POL.push_back(Vec2d(623.88, 401.64));
	POL.push_back(Vec2d(676.80, 634.47));
	POL.push_back(Vec2d(530.75, 822.85));
	POL.push_back(Vec2d(268.28, 784.75));				//将起始点放入尾部,方便遍历每一条边
		
	//
	if (Point_In_Polygon_2D(407.98, 579.43, POL))
	{
		cout << "点(407.98, 579.43)在多边形内" << endl;
	}
	else
	{
		cout << "点(407.98, 579.43)在多边形外" << endl;
	}

	//
	if (Point_In_Polygon_2D(678.92, 482.07, POL))
	{
		cout << "点(678.92, 482.07)在多边形内" << endl;
	}
	else
	{
		cout << "点(678.92, 482.07)在多边形外" << endl;
	}

	return 0;
}

运行结果如下:

改进空间

  1. 很多情况下在使用该算法之前,需要一个快速检测的功能:当点不在多边形的外包矩形的时候,那么点一定不在多边形内。
  2. 判断点在线上函数IsPointOnLine()和判断线段相交函数IsIntersect()这里并不是最优算法,可以改成向量计算,效率应该更高。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值