稠密环境下编队飞行的分布式群轨迹优化(二)

稠密环境下编队飞行的分布式群轨迹优化(二)

原文章题目:Distributed Swarm Trajectory Optimization for Formation Flight in
Dense Environments
作者:Lun Quan, Longji Yin, Chao Xu, and Fei Gao
出处:2022 International Conference on Robotics and Automation (ICRA)
原文下载链接点击下载
背景介绍部分在这里稠密环境下编队飞行的分布式群轨迹优化(一)
实验部分介绍在这里
稠密环境下编队飞行的分布式集群轨迹优化(三)

三、微分编队相似性指标

   N N N个机器人的编队由无向图 G = ( V , E ) {\cal G} = ({\cal V},{\cal E}) G=(V,E)建模,其中 V = { 1 , 2 , . . . , N } {\cal V} = \{ 1,2,...,N\} V={1,2,...,N}是顶点集, E ⊂ V × V {\cal E} \subset {\cal V} \times {\cal V} EV×V是边缘。在图 G {\cal G} G中,顶点 i i i代表位置向量 p i = [ x i , y i , z i ] ∈ 3 {{\bf{p}}_i} = [{x_i},{y_i},{z_i}] \in {^3} pi=[xi,yi,zi]3的第 i t h {i^{th}} ith个机器人。连接顶点 i ∈ V i \in {\cal V} iV和顶点 j ∈ V j \in {\cal V} jV的边 e i j ∈ E {e_{ij}} \in {\cal E} eijE意味着机器人 i i i j j j可以测量彼此之间的几何距离。在我们的工作中,每个机器人都与所有其他机器人进行通信,因此形成图 G {\cal G} G是完整的。图 G {\cal G} G的每条边都与一个非负数作为权重相关联。在这项工作中,边 e i j {e_{ij}} eij的权重由下式给出:
w i j = ∥ p i − p j ∥ 2 , ( i , j ) ∈ E , ( 1 ) {w_{ij}} = {\left\| {{{\bf{p}}_i} - {{\bf{p}}_j}} \right\|^2},\quad (i,j) \in {\cal E},(1) wij=pipj2,(i,j)E,1
其中 ∥ ⋅ ∥ \parallel \cdot \parallel 表示欧几里德范数。现在确定了编队图 G {\cal G} G的邻接矩阵 A ∈ R N × N {\bf{A}} \in \Bbb R {^{N \times N}} ARN×N和度矩阵 D ∈ R N × N {\bf{D}} \in \Bbb R{^{N \times N}} DRN×N。因此,相应的拉普拉斯矩阵由下式给出:
L = D − A . ( 2 ) {\bf{L}} = {\bf{D}} - {\bf{A}}.(2) L=DA.2
   利用上述矩阵,图 G {\cal G} G的对称归一化拉普拉斯矩阵定义为
L ^ = D − 1 / 2 L D − 1 / 2 = I − D − 1 / 2 A D − 1 / 2 , ( 3 ) \widehat {\bf{L}} = {{\bf{D}}^{ - 1/2}}{\bf{L}}{{\bf{D}}^{ - 1/2}} = {\bf{I}} - {{\bf{D}}^{ - 1/2}}{\bf{A}}{{\bf{D}}^{ - 1/2}},(3) L =D1/2LD1/2=ID1/2AD1/2,3
其中 I ∈ R N × N {\bf{I}} \in \Bbb R{^{N \times N}} IRN×N是单位矩阵。
   作为图表示矩阵,拉普拉斯包含有关图结构的信息[25]。为了实现所需的群体形成,我们提出了一种形成相似距离度量:
f = ∥ L ^ − L ^ d e s ∥ F 2 = t r { ( L ^ − L ^ d e s ) T ( L ^ − L ^ d e s ) } , ( 4 ) f = \left\| {\widehat {\bf{L}} - {{\widehat {\bf{L}}}_{des}}} \right\|_F^2 = {\mathop{\rm tr}\nolimits} \left\{ {{{\left( {\widehat {\bf{L}} - {{\widehat {\bf{L}}}_{{\rm{des }}}}} \right)}^T}\left( {\widehat {\bf{L}} - {{\widehat {\bf{L}}}_{{\rm{des }}}}} \right)} \right\},(4) f= L L des F2=tr{(L L des)T(L L des)},4
其中 t r { ⋅ } tr\{ \cdot \} tr{}表示矩阵的迹, L ^ \widehat {\bf{L}} L 是当前群体编队的对称归一化拉普拉斯算子, L ^ d e s {\widehat {\bf{L}}_{{\rm{des }}}} L des是期望编队的对应项。弗罗贝尼乌斯范数 ∥ ⋅ ∥ F \parallel \cdot {\parallel _F} F用于我们的距离度量。 f f f 对于编队的平移和旋转本身是不变的,因为相应的图形是由机器人位置之间的绝对距离加权的。缩放不变性是通过公式(3)中的度矩阵对图拉普拉斯算子进行归一化来实现的。
   我们的度量对于每个机器人的位置在分析上是可微的。对于机器人 i i i,我们使用其 n n n个相邻边的权重 { e i 1 , e i 2 , . . . , , e i n } \{ {e_{i1}},{e_{i2}},...,,{e_{in}}\} {ei1,ei2,...,,ein}形成权重向量 w i = [ w i 1 , w i 2 , . . . , , w i n ] T {{\bf{w}}_i} = {[{w_{i1}},{w_{i2}},...,,{w_{in}}]^T} wi=[wi1,wi2,...,,win]T 。根据链式求导法则, f f f相对于的梯度 p i {{\bf{p}}_i} pi可写为
w i = [ w i 1 , w i 2 , . . . , , w i n ] T ( 5 ) {{\bf{w}}_i} = {[{w_{i1}},{w_{i2}},...,,{w_{in}}]^T}(5) wi=[wi1,wi2,...,,win]T5
根据我们的度量(4), f f f相对于每个权重 w i j {w_{ij}} wij的梯度可以计算如下
∂ f ∂ w i j = t r { ( ∂ f ∂ L ^ ) T ( ∂ L ^ ∂ w i j ) } , ( 6 ) \frac{{\partial f}}{{\partial {w_{ij}}}} = tr\{ {(\frac{{\partial f}}{{\partial {\bf{\hat L}}}})^T}(\frac{{\partial {\bf{\hat L}}}}{{\partial {w_{ij}}}})\} ,(6) wijf=tr{(L^f)T(wijL^)},6
其中
∂ f ∂ L ^ = ∂ ∣ ∣ L ^ − L ^ d e s ∣ ∣ F 2 ∂ L ^ = 2 ( L ^ − L ^ d e s ) , ( 7 ) \frac{{\partial f}}{{\partial {\bf{\hat L}}}} = \frac{{\partial ||{\bf{\hat L}} - {{{\bf{\hat L}}}_{des}}||_F^2}}{{\partial {\bf{\hat L}}}} = 2({\bf{\hat L}} - {{\bf{\hat L}}_{des}}),(7) L^f=L^∣∣L^L^desF2=2(L^L^des),7
∂ L ^ ∂ w i j = − ∂ ( D − 1 / 2 A D − 1 / 2 ) ∂ w i j . ( 8 ) \frac{{\partial {\bf{\hat L}}}}{{\partial {w_{ij}}}} = - \frac{{\partial ({{\bf{D}}^{ - 1/2}}{\bf{A}}{{\bf{D}}^{ - 1/2}})}}{{\partial {w_{ij}}}}. (8) wijL^=wij(D1/2AD1/2).8
那么梯度 ∂ f / ∂ w i \partial f/\partial {{\bf{w}}_i} f/wi可以写为
∂ f / ∂ w i = [ ∂ f / ∂ w i 1 , ∂ f / ∂ w i 2 , . . . , ∂ f / ∂ w i n ] T . ( 9 ) \partial f/\partial {{\bf{w}}_i} = {[\partial f/\partial {w_{i1}},\partial f/\partial {w_{i2}},...,\partial f/\partial {w_{in}}]^T}.(9) f/wi=[f/wi1,f/wi2,...,f/win]T.9
对于 ∂ w i / ∂ p i \partial {{\bf{w}}_i}/\partial {{\bf{p}}_i} wi/pi ,由于权重函数(1)是可微的,因此可以很容易地导出雅可比行列式。图2显示了正方形编队的度量和梯度的轮廓。
在这里插入图片描述

四、编队飞行时空轨迹优化

A.轨迹表示

  在这项工作中,我们采用文献[26]中MINCO表示。这是一种最小控制工作量的多项式轨迹类,用于对平坦输出轨迹进行时空变形。
Ξ M I N C O = { p ( t ) : [ 0 , T Σ ] ↦ R m ∣ c = C ( q , T ) , q ∈ R m ( M − 1 ) , T ∈ R > 0 M } , ( 10 ) {\Xi _{MINCO}} = \{ p(t):[0,{T_\Sigma }] \mapsto \Bbb R {^m}|{\bf{c}} = C({\bf{q}},{\bf{T}}),{\bf{q}} \in \Bbb R {^{m(M - 1)}},{\bf{T}} \in \Bbb R _{ > 0}^M\} , (10) ΞMINCO={p(t):[0,TΣ]Rmc=C(q,T),qRm(M1),TR>0M},10
其中, c = ( c 1 T , ⋯   , c M T ) T {\bf{c}} = {(c_1^T, \cdots ,c_M^T)^T} c=(c1T,,cMT)T为多项式系数, q = ( q 1 , ⋯   , q M − 1 ) {\bf{q}} = ({q_1}, \cdots ,{q_{M - 1}}) q=(q1,,qM1)中间点, T = ( T 1 , ⋯   , T M ) T {\bf{T}} = {({T_1}, \cdots ,{T_M})^T} T=(T1,,TM)T时间向量, C ( q , T ) C({\bf{q}},{\bf{T}}) C(q,T)是根据文献[26]中的定理2构造的参数映射, T Σ = ∑ M i = 1 T i {T_\Sigma } = \sum \limits_M^{i = 1} {T_i} TΣ=Mi=1Ti是总时间。
   n n n M M M段轨迹 p ( t ) p(t) p(t)定义为:
p ( t ) = p i ( t − t i − 1 ) , ∀ t ∈ [ t i − 1 , t i ) , ( 11 ) p(t) = {p_i}(t - {t_{i - 1}}),\quad \forall t \in [{t_{i - 1}},{t_i}),(11) p(t)=pi(tti1),t[ti1,ti),11
i t h {i^{th}} ith块轨迹由5次多项式(即 N = 5 N=5 N=5)表示
p i ( t ) = c i T β ( t ) , ∀ t ∈ [ 0 , T i ] , ( 12 ) {p_i}(t) = c_i^T\beta (t),\quad \forall t \in [0,{T_i}],(12) pi(t)=ciTβ(t),t[0,Ti],12
其中, c i ∈ R 6 × m {c_i} \in {\Bbb R^{6 \times m}} ciR6×m是系数矩阵, β ( t ) = [ 1 , t , . . . , t N ] T \beta (t) = {[1,t,...,{t^{\rm{N}}}]^T} β(t)=[1,t,...,tN]T是自然基, T i = t i − t i − 1 {T_i} = {t_i} - {t_{i - 1}} Ti=titi1是第 i t h {i^{th}} ith块的时间分配。
   MINCO由 ( q , T ) ({\bf{q}},{\bf{T}}) (q,T)唯一确定。并且参数 c = C ( q , T ) {\bf{c}} = C({\bf{q}},{\bf{T}}) c=C(q,T)映射以线性时间和空间复杂度将轨迹表示 ( c , T ) ({\bf{c}},{\bf{T}}) (c,T)转换为 ( q , T ) ({\bf{q}},{\bf{T}}) (q,T),这使得任何二阶连续成本函数 J ( c , T ) J({\bf{c}},{\bf{T}}) J(c,T) J ~ ( q , T ) \tilde J({\bf{q}},{\bf{T}}) J~(q,T)表示。因此,可以分别通过 ∂ J ~ / ∂ q \partial \tilde J/\partial {\bf{q}} J~/q ∂ J ~ / ∂ T \partial \tilde J/\partial {\bf{T}} J~/T求得 ∂ J / ∂ c \partial J/\partial {\bf{c}} J/c ∂ J / ∂ T \partial J/\partial {\bf{T}} J/T
   特别是,为了处理时间积分约束 ψ ( p ( t ) , ⋯   , p ( 3 ) ( t ) ) ≺ ‾ 0 \psi (p(t), \cdots ,{p^{(3)}}(t))\underline \prec {\bf{0}} ψ(p(t),,p(3)(t))0,例如避免碰撞和动力学可行性,我们将它们转换为有限维约束 ψ ( p ^ i , j ) \psi ({\hat p_{i,j}}) ψ(p^i,j)通过对轨迹上的约束点 p ^ i , j = p i ( ( j / κ i ) ⋅ T i ) {\hat p_{i,j}} = {p_i}((j/{\kappa _i}) \cdot {T_i}) p^i,j=pi((j/κi)Ti)进行采样,其中 κ i {\kappa _i} κi是第 i t h {i^{th}} ith块上的采样点。

B.优化问题的构建

   我们将编队飞行的轨迹生成公式化为无约束优化问题:
min ⁡ c , T [ J e , J t , J o , J f , J r , J d , J u ] ⋅ λ , ( 13 ) \mathop {\min }\limits_{{\bf{c}},{\bf{T}}} \left[ {{J_e},{J_t},{J_o},{J_f},{J_r},{J_d},{J_u}} \right] \cdot \lambda ,(13) c,Tmin[Je,Jt,Jo,Jf,Jr,Jd,Ju]λ,13
其中, λ \lambda λ是权衡每个成本函数的权重向量。
1)平滑度惩罚 J e {J_e} Je:第 i t h {i^{th}} ith块轨迹的三阶控制输入及其梯度写为:
J e = ∫ 0 T i ∥ p i ( 3 ) ( t ) ∥ 2 d t , ( 14 ) {J_e} = \smallint _0^{{T_i}}\parallel p_i^{(3)}(t){\parallel ^2}dt,(14) Je=0Tipi(3)(t)2dt,14
∂ J e ∂ c i = 2 ( ∫ 0 T i β ( 3 ) ( t ) β ( 3 ) ( t ) T d t ) c i , ( 15 ) \frac{{\partial {J_e}}}{{\partial {c_i}}} = 2\left( {\smallint _0^{{T_i}}{\beta ^{(3)}}(t){\beta ^{(3)}}{{(t)}^T}dt} \right){c_i},(15) ciJe=2(0Tiβ(3)(t)β(3)(t)Tdt)ci,15
∂ J e ∂ T i = c i T β ( 3 ) ( T i ) β ( 3 ) ( T i ) T c i . ( 16 ) \frac{{\partial {J_e}}}{{\partial {T_i}}} = c_i^T{\beta ^{(3)}}({T_i}){\beta ^{(3)}}{({T_i})^T}{c_i}.(16) TiJe=ciTβ(3)(Ti)β(3)(Ti)Tci.16
2)总时间惩罚 J t {J_t} Jt:为了保证轨迹的光滑性,我们最小化总时间 J t = ∑ M i = 1 T {J_t} = \sum \limits_M^{i = 1} T Jt=Mi=1T。梯度由 ∂ J t / ∂ c = 0 \partial {J_{\rm{t}}}/\partial {\bf{c}} = 0 Jt/c=0 ∂ J t / ∂ T = 1 \partial {J_{\rm{t}}}/\partial {\bf{T}} = 1 Jt/T=1求出。
3)碰撞项惩罚 J o {J_o} Jo:受文献[27]的启发,避障惩罚 J o {J_o} Jo使用欧几里得符号距离场(ESDF)计算。选取靠近障碍物的约束点:
ψ o ( p ^ i , j ) = { d t h r − d ( p ^ i , j ) , if  d ( p ^ i , j ) < d t h r 0 , if  d ( p ^ i , j ) ≥ d t h r ( 17 ) {\psi _o}({\hat p_{i,j}})= \begin{cases} {{d_{thr}} - d({{\hat p}_{i,j}})}, & \text{if ${d({{\hat p}_{i,j}}) < {d_{thr}}}$}\\ 0,& \text{if ${d({{\hat p}_{i,j}}) \ge {d_{thr}}}$} \end{cases}(17) ψo(p^i,j)={dthrd(p^i,j),0,if d(p^i,j)<dthrif d(p^i,j)dthr17
其中, d t h r {d_{thr}} dthr是安全阈值, d ( p ^ i , j ) d({\hat p_{i,j}}) d(p^i,j)是所考虑的点与其周围最近的障碍物之间的距离。然后通过计算采样约束函数的加权和得到避障惩罚:
J o = T i κ i ∑ j = 0 κ i ω ˉ j max ⁡ { ψ o ( p ^ i , j ) , 0 } 3 , ( 18 ) {J_o} = \frac{{{T_i}}}{{{\kappa _i}}} \sum \limits_{j = 0}^{{\kappa _i}} {\bar \omega _j}\max {\{ {\psi _o}({\hat p_{i,j}}),0\} ^3},(18) Jo=κiTij=0κiωˉjmax{ψo(p^i,j),0}3,18
其中 ( ω ˉ 0 , ω ˉ 1 , ⋯   , ω ˉ κ i − 1 , ω ˉ κ i ) = ( 1 / 2 , 1 , ⋯   , 1 , 1 / 2 ) ({{\bar \omega }_0},{{\bar \omega }_1}, \cdots ,{{\bar \omega }_{{\kappa _i} - 1}},{{\bar \omega }_{{\kappa _i}}}) = (1/2,1, \cdots ,1,1/2) (ωˉ0,ωˉ1,,ωˉκi1,ωˉκi)=(1/2,1,,1,1/2)是遵循梯形规则的正交系数,如文献[28]。
   J o {J_o} Jo相对于 c i {c_i} ci T i T_i Ti的梯度具体如下:
∂ J o ∂ c i = ∂ J o ∂ ψ o ∂ ψ o ∂ c i , ( 19 ) \frac{{\partial {J_o}}}{{\partial {c_i}}} = \frac{{\partial {J_o}}}{{\partial {\psi _o}}}\frac{{\partial {\psi _o}}}{{\partial {c_i}}}, (19) ciJo=ψoJociψo,19
∂ J o ∂ T i = J o T i + ∂ J o ∂ ψ o ∂ ψ o ∂ t ∂ t ∂ T i , ( 20 ) \frac{{\partial {J_o}}}{{\partial {T_i}}} = \frac{{{J_o}}}{{{T_i}}} + \frac{{\partial {J_o}}}{{\partial {\psi _o}}}\frac{{\partial {\psi _o}}}{{\partial t}}\frac{{\partial t}}{{\partial {T_i}}},(20) TiJo=TiJo+ψoJotψoTit,20
∂ t ∂ T i = j κ i , t = j κ i T i , ( 21 ) \frac{{\partial t}}{{\partial {T_i}}} = \frac{j}{{{\kappa _i}}},\quad t = \frac{j}{{{\kappa _i}}}{T_i},(21) Tit=κij,t=κijTi,21
其中, t t t 是相对时间。对于 d ( p ^ i , j ) < d t h r d({\hat p_{i,j}}) < {d_{thr}} d(p^i,j)<dthr的情况,梯度由下式给出
∂ ψ o ∂ c i = − β ( t ) ∇ d T , ∂ ψ o ∂ t = − ∇ d T p ˙ ( t ) , ( 22 ) \frac{{\partial {\psi _o}}}{{\partial {c_i}}} = - \beta (t)\nabla {d^T},\quad \frac{{\partial {\psi _o}}}{{\partial t}} = - \nabla {d^T}\dot p(t),(22) ciψo=β(t)dT,tψo=dTp˙(t),22
其中, ∇ d \nabla d d是ESDF在 p ^ i , j {\hat p_{i,j}} p^i,j中的梯度。否则,梯度为 ∂ ψ o / ∂ c i = 0 , ∂ ψ o / ∂ t = 0 \partial {\psi _o}/\partial {c_i} = {\bf{0}}, \partial {\psi _o}/\partial t = 0 ψo/ci=0,ψo/t=0
4)集群编队惩罚 J f {J_f} Jf:在第三节中,我们设计了一个可微分度量来量化群体形成之间的相似距离。在优化中,当前地层与期望地层之间的相似性误差通过 ψ f = f ( p ( t ) , ⋃ Φ p ϕ ( τ ) ) f ( ⋅ ) {\psi _f} = f(p(t),\bigcup\nolimits_\Phi {{p_\phi }(\tau )} )f\left( \cdot \right) ψf=f(p(t),Φpϕ(τ))f()来测量,其中 f ( ⋅ ) f\left( \cdot \right) f()在(4)中详细说明, Φ \Phi Φ表示集合其他智能体的。
   由于 J f {J_f} Jf涉及其他智能体的轨迹,因此我们需要处理自身轨迹的相对时间 t = j T i / κ i t = j{T_i}/{\kappa _i} t=jTi/κi和其他智能体轨迹的全局时间戳 τ = T 1 + . . . + T i − 1 + j T i / κ i \tau = {T_1} + ... + {T_{i - 1}} + j{T_i}/{\kappa _i} τ=T1+...+Ti1+jTi/κi J f {J_f} Jf考虑任意 1 ≤ l ≤ i 1 \le l \le i 1li的先前时间 ,并用公式表示:
J f = T i κ i ∑ κ i j = 0 ω ˉ j max ⁡ { ψ f ( p ( t ) , ⋃ Φ p ϕ ( τ ) ) , 0 } 3 . ( 23 ) {J_f} = \frac{{{T_i}}}{{{\kappa _i}}} \sum \limits_{{\kappa _i}}^{j = 0} {\bar \omega _j}\max {\{ {\psi _f}(p(t),\bigcup\limits_\Phi {{p_\phi }(\tau )} ),0\} ^3}.(23) Jf=κiTiκij=0ωˉjmax{ψf(p(t),Φpϕ(τ)),0}3.23
   J f {J_f} Jf相对于 c i {c_i} ci T l {T_l} Tl的梯度具体如下
∂ J f ∂ c i = ∂ J f ∂ ψ f ∂ ψ f ∂ c i , ( 24 ) \frac{{\partial {J_f}}}{{\partial {c_i}}} = \frac{{\partial {J_f}}}{{\partial {\psi _f}}}\frac{{\partial {\psi _f}}}{{\partial {c_i}}}, (24) ciJf=ψfJfciψf,24
∂ J f ∂ T l = J f T l + ∂ J f ∂ ψ f ∂ ψ f ∂ T l . ( 25 ) \frac{{\partial {J_f}}}{{\partial {T_l}}} = \frac{{{J_f}}}{{{T_l}}} + \frac{{\partial {J_f}}}{{\partial {\psi _f}}}\frac{{\partial {\psi _f}}}{{\partial {T_l}}}.(25) TlJf=TlJf+ψfJfTlψf.25
   为了求出 ∂ ψ f / ∂ T l \partial {\psi _f}/\partial {T_l} ψf/Tl,需要 ψ f {\psi _f} ψf t t t τ \tau τ 进行求导:
∂ ψ f ∂ T l = ∂ ψ f ∂ t ∂ t ∂ T l + ∂ ψ f ∂ τ ∂ τ ∂ T l , ( 26 ) \frac{{\partial {\psi _f}}}{{\partial {T_l}}} = \frac{{\partial {\psi _f}}}{{\partial t}}\frac{{\partial t}}{{\partial {T_l}}} + \frac{{\partial {\psi _f}}}{{\partial \tau }}\frac{{\partial \tau }}{{\partial {T_l}}}, (26) Tlψf=tψfTlt+τψfTlτ,26
∂ t ∂ T l = { j κ i , if  l = i , 0 , if  l < i , ∂ τ ∂ T l = { j κ i , if  l = i , 0 , if  l < i ( 27 ) \frac{{\partial t}}{{\partial {T_l}}}= \begin{cases} {\frac{j}{{{\kappa _i}}}}, & \text{if ${l = i,}$}\\ 0,& \text{if ${l < i}$} \end{cases}, \frac{{\partial \tau }}{{\partial {T_l}}}= \begin{cases} {\frac{j}{{{\kappa _i}}}}, & \text{if ${l = i,}$}\\ 0,& \text{if ${l < i}$} \end{cases}(27) Tlt={κij,0,if l=i,if l<i,Tlτ={κij,0,if l=i,if l<i27
ψ f {\psi _f} ψf相对于 c i {c_i} ci t t t τ \tau τ 的梯度由下式给出
∂ ψ f ∂ c i = ∂ ψ f ∂ p ( t ) ∂ p ( t ) ∂ c i , ( 28 ) \frac{{\partial {\psi _f}}}{{\partial {c_i}}} = \frac{{\partial {\psi _f}}}{{\partial p(t)}}\frac{{\partial p(t)}}{{\partial {c_i}}}, (28) ciψf=p(t)ψfcip(t),28
∂ ψ f ∂ t = ∂ ψ f ∂ p ( t ) ∂ p ( t ) ∂ t = ∂ ψ f ∂ p ( t ) p ˙ ( t ) , ( 29 ) \frac{{\partial {\psi _f}}}{{\partial t}} = \frac{{\partial {\psi _f}}}{{\partial p(t)}}\frac{{\partial p(t)}}{{\partial t}} = \frac{{\partial {\psi _f}}}{{\partial p(t)}}\dot p(t), (29) tψf=p(t)ψftp(t)=p(t)ψfp˙(t),29
∂ ψ f ∂ τ = ∑ Φ ∂ ψ f ∂ p ϕ ( τ ) ∂ p ϕ ( τ ) ∂ τ = ∑ Φ ∂ ψ f ∂ p ϕ ( τ ) p ˙ ϕ ( τ ) , ( 30 ) \frac{{\partial {\psi _f}}}{{\partial \tau }} = \sum \limits_\Phi \frac{{\partial {\psi _f}}}{{\partial {p_\phi }(\tau )}}\frac{{\partial {p_\phi }(\tau )}}{{\partial \tau }} = \sum \limits_\Phi \frac{{\partial {\psi _f}}}{{\partial {p_\phi }(\tau )}}{\dot p_\phi }(\tau ),(30) τψf=Φpϕ(τ)ψfτpϕ(τ)=Φpϕ(τ)ψfp˙ϕ(τ),30
其中 ψ f {\psi _f} ψf p ( t ) p(t) p(t) p ϕ ( τ ) {p_\phi }(\tau ) pϕ(τ) 的梯度见 (5)。
5)集群编队无人机间碰撞惩罚 J r {J_r} Jr:我们惩罚在全局时间戳 处接近其他智能体轨迹的约束点。因此,群体相互回避的成本函数定义为
J r = ∑ Φ T i κ i ∑ κ i j = 0 ω ˉ j max ⁡ { ψ r ϕ ( p ( t ) , τ ) , 0 } 3 , ( 31 ) {{J_r} = \sum \limits_\Phi \frac{{{T_i}}}{{{\kappa _i}}}\sum \limits_{{\kappa _i}}^{j = 0} {{\bar \omega }_j}\max {{\{ {\psi _{{r_\phi }}}(p(t),\tau ),0\} }^3},}(31) Jr=ΦκiTiκij=0ωˉjmax{ψrϕ(p(t),τ),0}3,31
ψ r ϕ ( p ( t ) , τ ) = D r 2 − d ( p ( t ) , p ϕ ( τ ) ) 2 , ( 32 ) {\psi _{{r_\phi }}}(p(t),\tau ) = D_r^2 - d{(p(t),{p_\phi }(\tau ))^2}, (32) ψrϕ(p(t),τ)=Dr2d(p(t),pϕ(τ))2,32
d ( p ( t ) , p ϕ ( τ ) ) = ∥ p ( t ) − p ϕ ( τ ) ∥ , ( 33 ) d(p(t),{p_\phi }(\tau )) = \parallel p(t) - {p_\phi }(\tau )\parallel , (33) d(p(t),pϕ(τ))=∥p(t)pϕ(τ),33
其中, D r D_r Dr 是每个智能体之间的距离。
   J r {J_r} Jr相对于 c i c_i ci T l T_l Tl 的梯度与(24)和(25)相似, ∂ ψ r ϕ / ∂ T l \partial {\psi _{{r_\phi }}}/\partial {T_l} ψrϕ/Tl与(26)相同。当 D r 2 ≥ d ( p ( t ) , p ϕ ( τ ) ) 2 {\rm{D}}_r^2 \ge d{(p(t),{p_\phi }(\tau ))^2} Dr2d(p(t),pϕ(τ))2时, ψ r ϕ {\psi _{{r_\phi }}} ψrϕ 相对于 c i c_i ci t t t τ \tau τ 的梯度为
∂ ψ r ϕ ∂ c i = − 2 β ( t ) ( p ( t ) − p ϕ ( τ ) ) T , ( 34 ) \frac{{\partial {\psi _{{r_\phi }}}}}{{\partial {c_i}}} = - 2\beta (t){(p(t) - {p_\phi }(\tau ))^T}, (34) ciψrϕ=2β(t)(p(t)pϕ(τ))T,34
∂ ψ r ϕ ∂ t = − 2 ( p ( t ) − p ϕ ( τ ) ) T p ˙ ( t ) , ( 35 ) \frac{{\partial {\psi _{{r_\phi }}}}}{{\partial t}} = - 2{(p(t) - {p_\phi }(\tau ))^T}\dot p(t), (35) tψrϕ=2(p(t)pϕ(τ))Tp˙(t),35
∂ ψ r ϕ ∂ τ = 2 ( p ( t ) − p ϕ ( τ ) ) T p ˙ ϕ ( t ) . ( 36 ) \frac{{\partial {\psi _{{r_\phi }}}}}{{\partial \tau }} = 2{(p(t) - {p_\phi }(\tau ))^T}{\dot p_\phi }(t).(36) τψrϕ=2(p(t)pϕ(τ))Tp˙ϕ(t).36
6)动力学可行性惩罚 J d J_d Jd:我们限制速度、加速度和加加速度的最大值,以保证智能体可以执行轨迹。读者可以参考[15]了解更多详细信息。
7)约束点的均匀分布 J u J_u Ju:约束点预计是空间均匀的。不均匀的约束点可能会跳过一些小尺寸的障碍物,这可能会降低最终轨迹的安全性。因此,对均匀分布惩罚 J u J_u Ju 进行优化,以防止约束点聚集在某些位置。读者可以参考[15]了解更多详细信息。

  本博客主要是对原文的翻译,对其中的内容细节并没有仔细推敲,翻译难免有误,希望各位看客评论区指出。谢谢!

  • 15
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值