StableDiffusion模型在不同硬件设备上的推理速度如何?

StableDiffusion模型在不同硬件设备上的推理速度大致如下:

GPU

  • 英伟达H100:在Stable Diffusion 3测试中,80GB的H100在特定配置下,使用2个节点、16个加速器和每个加速器16个恒定批处理大小时,每秒可生成595幅图像。
  • 英伟达A100
    • 80GB的A100在上述同样测试环境下,每秒生成381幅图像。
    • 使用基本PyTorch的A100在SDXL模型上生成30 steps 1024x1024图像需3.6秒,经过TensorRT优化后为2.7秒。
  • 英伟达RTX 4090:相比RTX 3090,推理时间大约快一半,在OneFlow加速下,相对Xformers在RTX 4090上实现了205.6%的加速。
  • 英伟达RTX 3090:RTX 3090的性能优于同级别的A5000和A4000等,在OneFlow加速下,相对Xformers在RTX 3090上实现了211.2%的加速。
  • 英伟达RTX 3060:在生成512×512分辨率图像时,图像生成时间为6.6秒。
  • 英特尔Gaudi2:96GB的Gaudi2在Stable Diffusion 3测试中,2个节点、16个加速器和每个加速器16个恒定批处理大小时,每秒可生成927幅图像;在SDXL模型上,3.2秒内可生成30 steps 1024x1024图像。

CPU

  • 普通配置:如果CPU性能不足,会导致模型推理速度变慢。如一些主频较低、核心数量少、缓存小的CPU,处理StableDiffusion任务时效率低下,生成一张普通分辨率图片可能需要较长时间,可能几十秒甚至更久。
  • 高性能配置:AMD或Intel的高性能处理器,具有多核心和高时钟频率,能提升推理速度,但相比优化后的高端GPU,仍有较大差距,生成一张默认分辨率(512×512)图片可能需数秒到十几秒。

其他设备

  • M系列Mac设备:优化后的Stable-Diffusion.cpp在M1 Pro以及M2 Max上推理速度有显著提升,在生成1024×1024分辨率图像时,相比原版Stable-Diffusion.cpp,推理速度提升可超过4.6倍(fp32类型),生成512×512图像时在M1 Pro上能加速1.84倍。
### Stable Diffusion 技术介绍 Stable Diffusion 是一种基于深度学习的图像生成模型,能够根据给定的文字描述自动生成高质量的图片。该技术利用了大量的训练数据来学习不同对象之间的关系以及它们在各种环境下的表现形式[^1]。 #### 主要特点 - **灵活性高**:可以从相同的文本提示生成多个不同的图像变体。 - **质量优异**:产生的图像具有较高的分辨率和细节度。 - **易于扩展**:支持多种风格转换和其他创意应用。 ### 使用指南 对于希望尝试这项先进技术的朋友来说,有几种方式可以开始: #### 方法一:在线平台体验 如果不想处理复杂的设置过程,则可以直接访问像 Hugging Face 这样的网站,在线测试预训练好的版本而无需任何额外配置[^2]。 #### 方法二:本地部署 更进一步的话,也可以考虑将其安装到个人电脑上以便离线工作。这通常涉及到以下几个方面的工作: - 下载官方发布的权重文件; - 准备合适的硬件设备(推荐 GPU 加速); - 安装必要的依赖库并搭建运行环境; 以 Python 为例,这里给出一段简单的脚本用于加载模型并执行推理任务: ```python from diffusers import StableDiffusionPipeline import torch model_id = "CompVis/stable-diffusion-v1-4" device = "cuda" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device) prompt = "a photograph of an astronaut riding a horse" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` 此代码片段展示了如何使用 `diffusers` 库中的接口快速实现文字转图片的功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值