Sealos AI Proxy 发布!一个平台调用所有大模型,再也不用到处找 API 了

你是一位开发者,你需要调用各类 AI 模型,每次调用模型,都要在不同的平台间反复横跳,你大概会遇到以下问题:

  1. 获取 API Key 流程繁琐:需访问多个厂商的官网,查阅各自的使用文档,并按照规定的步骤进行注册和申请。
  2. 多平台支付:在调用来自不同厂商的模型时,需要在这些厂商的计费平台上进行支付。
  3. 缺乏集中管理:要在不同平台上管理和监控 API 使用情况。

是不是觉得特别麻烦?

这就是目前的开发者们使用 AI 模型的真实写照。

但是,如果有一个 “超级模型调用平台”,能让你在一个 App 里调用所有 AI 模型,是不是很棒?

这正是我们开发 Sealos AI Proxy 的初衷 —— 一站式 AI 模型调用解决方案,让你可以在同一个平台中轻松调用各类 AI 模型

为什么选择 AI Proxy?

一键获取多平台 API Key

  • 告别繁琐的多平台注册流程
  • 仅需注册 Sealos 账号,即可获取主流 AI 模型的调用密钥
  • 支持多家主流厂商的 AI 模型,持续扩充中

统一支付与计费

  • 告别多平台充值的烦恼
  • 使用 Sealos 余额统一结算,支持查看详细计费明细
  • 透明的计费规则,按实际使用量付费

集中化管理与监控

  • 在统一界面管理所有 API Key
  • 实时监控各模型的调用情况
  • 可以看到详细的调用日志

快速开始

AI Proxy 的使用非常简单,首先浏览器进入 Sealos 桌面,然后打开【AI Proxy】,点击【新建】按钮开始新建 Key。

创建完成后会看到 API Endpoint 和需要调用的 API Key,直接点击复制进行使用。

接下来让我们看一个具体的调用示例。以下是一段简单的 JavaScript 代码:

async function main() {
  const apiKey = 'sk-oci8dELRkPA0P4rM55521a399b524d75Ba3f74D1790d7656'
  const apiUrl = 'https://aiproxy.hzh.sealos.run/v1/chat/completions'
  const prompt = '蔡徐坤的故事?'
  const response = await fetch(apiUrl, {
      method: 'POST',
      headers: { 'Content-Type': 'application/json', 'Authorization': `Bearer ${apiKey}`},
      body: JSON.stringify({
          model: 'Doubao-lite-4k',
          messages: [
              { role: 'system', content: 'You are a helpful assistant.' },
              { role: 'user', content: prompt }
          ],
          max_tokens: 2048,
          temperature: 0.7,
      }),
  })
  const data = await response.json()
  console.log(data.choices[0].message.content)
}
main() 

AI Proxy 还提供了完整的调用日志和费用管理功能,在调用日志界面中,您可以实时查看每个模型的详细调用记录,包括调用时间、参数配置、响应结果等信息,方便您进行使用情况分析和问题排查。

在计费方面,AI Proxy 采用与 Sealos 平台统一的计费体系,直接使用 Sealos 余额进行结算,无需额外充值。您可以在 Sealos 费用中心一目了然地查看每个模型的具体调用费用,帮助您更好地控制成本和预算。

使用 Devbox 开发 AI 应用

下面我们来看一个完整的 AI 应用开发示例,直接使用 Sealos Devbox 和 Cursor 开发并部署一个完整的 AI 应用。

首先在 Sealos 桌面打开 Devbox,这里我选择使用 Next.js 模板创建一个新的开发环境:

Devbox 会自动为我们配置好所需的开发环境,包括 Node.js 运行时、包管理器等。我们可以选择使用 Cursor 作为开发工具。在操作选项中选择使用 Cursor 连接:

首次打开会提示安装 Devbox 插件,安装后即可自动连接开发环境。

有了开发环境,我们就可以开始构建 AI 应用了。比如,我们可以创建一个简单的 AI 虚拟女友

怎么创建呢?当然是让 Cursor 帮我们写代码了。直接告诉它我的需求,就开始吭哧吭哧帮我们创建文件写代码了。

按下 Ctrl+I 可以打开 Composer 面板。 按下 Ctrl+L 可以打开对话面板。

如果你觉得不满意,还可以让 Cursor 继续优化代码。最终开发完成后还需要打开 Cursor 终端安装一下依赖:

npm install

然后通过 npm run dev 启动开发服务器。

现在回到 Devbox 界面,进入开发环境的详情页面:

点击外网地址即可打开应用。

这是个公网地址哦,团队成员可以直接通过这个链接访问和预览应用,非常有利于团队协作和开发调试。

来看看最终的效果:

大家如果对这个 “女神苏苏” 项目比较感兴趣,可以在评论区留言,如果留言数量足够多,我会单独写一篇教程详细介绍这个项目的开发过程 😁

总结

Sealos AI Proxy 为我们提供了稳定可靠的 AI 模型调用服务,支持各厂商的主流大模型,并提供统一的 API 接口。通过 AI Proxy,我们可以轻松实现 AI 应用所需的各种功能,无需担心模型调用的稳定性和成本问题。

而 Sealos Devbox 则为我们提供了一个完整的云开发环境,从代码编写到应用部署,一站式解决方案让开发者可以专注于业务逻辑的实现,不用再为环境配置而苦恼。

Sealos Devbox + AI Proxy 就是王炸,AI Proxy 解决了统一模型调用的难题,而 Devbox 则让开发部署变得轻而易举。

### Deepseek 收费原因及模式 #### 费用构成因素 Deepseek 的费用主要由几个方面决定: - **模型选择的影响**:不同类型的模型有不同的计算资源需求,这直接影响到使用的成本。例如,`deepseek-chat` 成本仅为 1.42 元,而 `deepseek-reasoner` 则高达 9.6 元,两者相差近 6.8 倍[^2]。 - **缓存机制的作用**:缓存命中率对于减少输入成本非常重要。当 `deepseek-chat` 的缓存命中率从 80% 下降到 50%,其输入成本会相应增加,使得总成本也有所上升,具体是从 1.3 元增至 1.8 元。 - **输出成本的比例**:在某些情况下,比如使用 `deepseek-reasoner` 进行处理时,输出部分的成本占据了整个请求成本的大头,达到了约 83% (即 8 元/9.6 元),因此合理设定生成长度参数(如 `max_tokens`)可以有效降低成本。 #### 实际案例中的应用效果 以一家电商企业为例,在采用 DeepSeek 处理大量数据之前,该公司每月需要支付大约 210 万元来管理每天产生的 1,000 万条评论;但在引入 DeepSeek 后,同样的工作量下支出锐减到了每个月只需花费 3 万元。这一变化表明了 DeepSeek 不仅提高了效率而且极大地降低了运营开支[^3]。 #### 接入方式的选择 除了考虑上述提到的各种成本要素外,如何接入服务也是一个重要因素。如果只是单纯想要利用 DeepSeek V3 模型,则可以直接调用官方提供的 API 来完成操作。不过,如果有更多样化的需求或者希望集成其他第三方工具的话,Sealos AI Proxy 可能是一个更好的解决方案因为它支持多模型连接[^4]。 ```python import requests def call_deepseek_api(api_key, model="chat", text_input=None): url = f"https://api.deepseek.com/v1/models/{model}/completions" headers = {"Authorization": f"Bearer {api_key}"} payload = { "prompt": text_input, "max_tokens": 150 # 控制输出长度以节省成本 } response = requests.post(url, json=payload, headers=headers) return response.json() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值