【综述】深度长尾学习

写在前面,内容来自公众号 机器之心

仅作为知识传播,无商业用途,侵权告删~


目录

为什么要重视深度长尾学习?

深度长尾学习的主要方法类别

类别重平衡:

信息增强: 

网络模块提升:

深度长尾学习的新评价指标

深度长尾学习的未来方向

新方法探索:

新任务设定探索:


长尾学习是推动神经网络模型落地的重要范式。在这篇综述中,来自新加坡国立大学和 SEA AI Lab 的学者们首次系统地阐述了深度长尾学习及其方法和应用,并提出了一个新的评价指标以验证现存长尾学习方法对类别不平衡问题的解决能力。

深度长尾学习是视觉识别任务中最具挑战性的问题之一,旨在从大量遵循长尾类别分布的图像中训练出性能良好的深度神经网络模型。近年来,学者们对该问题开展了大量研究,并取得了可喜进展。鉴于该领域的飞速发展,在这篇综述中,来自新加坡国立大学和 SEA AI Lab 的颜水成、冯佳时团队对深度长尾学习的最新进展进行了系统性的梳理和分类讨论,并设计了一个新的评价指标对现存方法进行实验分析,同时也对未来的重要研究方向进行了展望。

图片

论文链接:https://arxiv.org/pdf/2110.04596.pdf

为什么要重视深度长尾学习?

近年来,深度学习已经成为人工智能领域中最重要的技术之一。因强大的数据特征表达能力,深度神经网络已经被成功应用到众多视觉识别任务中并取得了显著的突破,如图像分类,物体检测和语义分割等。深度神经网络的成功源于其大量的模型参数对任务模式的学习,而这一过程需要大量的标注数据进行模型训练。在传统视觉识别任务中,标注数据的类别分布往往受到人为调整而变得均衡,即不同类别的样本数量无明显差别。

而在实际应用中,自然采集的数据类别通常表现为长尾分布(如下图),即一小部分类别拥有大量的样本,而其余大部分类别只有较少的样本量。然而,这一类别不平衡问题往往使得深度神经网络的训练变得非常困难。如下图所示,在长尾数据下训练的模型容易偏向训练数据中的多数类,即多数类的特征空间往往大于少数类的特征空间,且分类决策边界会向少数类方向偏移以确保更好地分类多数类,这一现象往往导致深度模型在数据量有限的少数类上表现不佳。因此,直接使用经验风险最小化方法来训练深度模型无法处理具有长尾类别不平衡问题的实际应用,如人脸识别,物种分类,医学图像诊断,无人机检测等等。

图片

为了解决这一长尾类别不平衡问题,深度长尾学习旨在从大量遵循长尾类分布的图像中训练出性能良好的深度模型。鉴于类别不平衡问题在现实任务中十分广泛,并且训练数据和测试数据的类别分布差异会极大限制神经网络的实际应用,这一研究课题具有重要的现实意义,是推动深度神经网络实现模型落地的重要范式。

尽管深度长尾学习领域发展迅速,应运而生的大量论文却容易导致学者和算法工程师们迷失在知识的海洋中。为了解决这一问题,该论文首次对深度长尾学习进行了系统性的综述,梳理出了一条深度长尾学习的清晰脉络,从而帮助业界学者和专家更好地理解深度长尾学习,并推动该领域的蓬勃发展。

该综述首先详细地介绍了深度长尾学习的任务设定、数据集、衡量指标、主流网络结构、知名竞赛、以及与其他任务间的关系。随后,该文将现存方法进行分类梳理。如下图所示,现存方法被分为三个主要的类别(即类别重平衡、信息增强和网络模块改进),同时能够被进一步细分为九个子类别。基于该分类法,该论文对现存方法进行了详细的综述和讨论。

图片

其中经典的方法如下表所示。同时作者还整理了一个深度长尾学习论文列表:https://github.com/Vanint/Awesome-LongTailed-Learning

图片

此外,该综述还提出了一个新的经验衡量指标(相对精度),并以此对现存最优的长尾学习算法进行了实验,旨在更好地对比现存方法对类别不平衡问题的处理能力。最后,该文探讨了深度长尾学习的主要应用场景和重要的未来研究方向。

深度长尾学习的主要方法类别

类别重平衡

类别重平衡是长尾学习的主流方法之一,旨在对不同类别的数据量差异进行再平衡。该类方法可细分为类别重采样,类别代价敏感学习和对数几率调整。相较于其他的长尾学习范式,类别重平衡方法相对简单,却能获得相似甚至更好的性能。同时,部分的类别重平衡方法(尤其是代价敏感学习)对于解决长尾类别不平衡问题具有理论分析保证。这些优点使得该类方法成为解决实际长尾问题的重要工具。然而,该类方法的缺点在于,少数类的性能提升往往是以多数类的性能牺牲作为代价。尽管总体性能得到了提升,但该类方法无法本质地解决长尾问题中缺少数据信息的问题,尤其是在少数类上。

信息增强

基于信息增强的方法旨在引入额外信息来增强模型训练,从而提升模型在长尾数据上的学习性能。该类方法可细分为迁移学习和数据增强。因为引入了额外的信息,基于信息增强的方法能够在不损失多数类性能的情况下提升少数类性能。考虑到缺乏足够的少数类样本是长尾学习的一个关键问题,该类方法值得进一步探索。例如,数据增强是一项相对基础的技术,可以同时被应用到多种长尾学习任务中,这使得它非常具有实用性。但是,简单地应用现存经典的、不考虑类别差异的数据增强技术到长尾学习任务中是有局限的:即使长尾学习的整体性能获得提升,但因为多数类的数据量更多,导致多数类的数据增强也更多,从而进一步加剧了类别不平衡问题。因此,如何设计更好的针对深度长尾学习的数据增强方法是一个值得探索的问题。

网络模块提升

除了类别重平衡和信息增强方法以外,学者们也探索了如何在长尾学习中有针对性地提升网络模块,包括:(1)表示学习提升特征特征提取器,(2)分类器设计改进模型分类器,(3)解耦训练促进特征提取器和分类器的训练,(4)集成学习提升整体的网络结构。其中,表征学习和分类器设计是深度长尾学习的基本问题,值得进一步探索。解耦训练在最近的研究中越发受到关注;在该方案中,第二阶段的类平衡分类器微调能带来显着的性能提升,并不会引入太多额外的计算成本。对该类方法的一种批评是,累积的训练阶段会使解耦训练不太实用,难以直接与其他长尾问题中(如目标检测和实例分割)的经典方法相结合。尽管如此,解耦训练的想法在概念上很简单,因此可以很容易地在这些问题中用来设计新方法。最后,与其他类型的长尾学习方法相比,基于集成学习的方法通常在头类和尾类上都能获得更好的性能。这类方法的一个问题是,多个专家的使用会导致模型的计算成本增加。但是,该问题可以通过使用共享特征提取器来缓解,并且以效率为导向的专家分配策略和知识蒸馏策略也可以有效降低计算代价。

深度长尾学习的新评价指标

深度长尾学习旨在处理长尾类别不平衡问题以获得更好的模型性能,通常以测试集精度为衡量指标来评价长尾学习方法的性能及其处理类别不平衡问题的能力。然而,因为模型精度同时也受除类别不平衡问题之外的其他因素影响,所以测试集精度指标并不能准确反映不同方法在处理类别不平衡问题时的相对优势。例如,基于数据增强的长尾学习方法也会提升在类别平衡数据集上所训得到模型的测试精度;在这种情况下很难判断测试精度的提升是来自于类别不平衡问题的缓解还是来自更多数据信息的引入。这也启发大家重新思考:到底怎样才算真正解决长尾学习?为此,该综述提出了一个新的相对精度指标,用于消除非类别不平衡因素的影响,从而更好地衡量长尾学习算法对于类别不平衡问题的实际解决能力。基于这一指标,该综述开展实验对现存长尾学习算法进行了深入分析。

图片

深度长尾学习的未来方向

尽管深度长尾学习已经取得长足的进展,但依然存在许多开放性的问题以待进一步研究。

新方法探索

不依赖于标签统计频率的类别重平衡;基于无标签数据的迁移学习和半监督学习;适用于多个长尾学习任务的数据增强;提升全部类别性能的集成学习。

新任务设定探索

测试集类别分布未知的长尾学习;存在开放类别的长尾学习;联邦长尾学习;类增量长尾学习;多域长尾学习;鲁棒长尾学习;长尾回归;长尾视频学习。


写在最后:

个人感觉这个长尾学习最终的本质还是在于对小样本数据的学习。针对小样本问题的研究很多,半监督,自监督,迁移学习等等,具体该怎么使用,还需要结合实际研究内容考虑。

  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 深度强化学习中,卷积神经网络(CNN)是一种常用的模型,广泛应用于图像和视频处理等领域。CNN模型采用了一种特殊的神经网络结构,利用卷积层和池化层来提取特征,具有高效、准确和自适应的特点。 卷积层是CNN模型的核心,通过一系列的卷积运算提取输入图像中的特征,并生成一组输出图像,每个输出图像对应一个特征。卷积运算是一种局部连接的运算方式,它根据预设的卷积核对输入数据进行卷积,得到卷积后的输出数据。卷积窗口大小和卷积核数量的设置,决定了卷积层能够提取的特征类型和数量。而池化层则是在卷积层后,通过降采样操作将卷积层得到的特征进行压缩,从而减少数据的规模,同时也能够提高模型的抗噪声能力。 CNN模型中,卷积层和池化层的替换、分组、重叠等操作形成了各种不同类型的网络结构,如LeNet、AlexNet、VGG、GoogLeNet等。这些网络结构在卷积层和池化层的设置、激活函数的选择、正则化等方面存在差异,适用于不同类型的任务和数据集。 总的来说,CNN模型是一种非常强大的图像和视频处理模型,它能够自动识别图像和视频中的多种特征,并学习出对应的特征表达方式。随着深度强化学习的不断发展,CNN模型的应用前景将会更加广泛和深入,为我们带来更多的惊喜和挑战。 ### 回答2: 卷积神经网络(CNN)是一种基于深度学习的神经网络,在计算机视觉和语音识别等领域表现出了很好的性能。它的核心是卷积层和池化层,以及全连接层和激活函数。本文将对CNN进行详细介绍,以揭示深度强化学习的原理及其数学基础。 卷积层是神经网络的核心组成部分,它通过对输入数据进行卷积运算,将其转化为更具有可解释性的特征向量。池化层可以用于减小特征向量的大小,从而进一步降低计算复杂度。全连接层借助于线性代数的矩阵乘法,将卷积层和池化层的输出转化为一个向量,以供后续的分类任务使用。激活函数是神经网络的非线性映射函数,可以引入非线性,从而使得神经网络能够处理更复杂的决策任务。 深度强化学习的核心在于通过多步决策来优化策略,而CNN作为一个强大的组件,可以用于处理决策任务中的视觉和语音信息。例如,在AlphaGo中,CNN网络用于对棋局进行图像分类,从而为RL算法提供更具可解释性的特征向量。在机器人控制中,CNN可以训练以将摄像头输入映射到动作空间中,从而完成类似人类视觉的场景理解和物体识别任务。 总之,CNN作为深度强化学习中不可或缺的一部分,为多种决策任务提供了强大的视觉处理能力,提高了决策精度,并为未来的深度强化学习研究提供了更加广阔的发展空间。 ### 回答3: 卷积神经网络是一种被广泛应用于图像、视频和语音等领域的深度学习技术,其主要特点是使用卷积层提取特征,加快了计算速度和模型的训练,同时避免了图像等尾数据的问题。 CNN中的卷积操作是一种优秀的特征提取方法,它采用固定大小、共享参数的卷积核进行特征提取。此外,卷积核还可以通过扩展至多通道、空洞卷积等方法提高模型的准确度。 在实际应用时,我们通常会使用多个卷积层进行特征提取,经过卷积和池化操作后再接上多个全连接层进行分类,这样可以大大提高模型的准确度和泛化能力。 CNN还有很多优化方式,如Batch Normalization、Dropout、Residual Network等,可以有效避免模型过拟合、提高训练速度和精度,对于一些具有高度噪声数据的场景,适当加入dropout或者BatchNorm批归一化对于模型的缩小过拟合的水平大都有帮助。 总之,CNN是一种非常强大实用的深度学习技术,在计算机视觉和语音识别领域有着广泛的应用和深远的影响,能够帮助人们更好地理解图像和声音中蕴含的信息,实现更加高效、精确和智能的功能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

allein_STR

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值