AlphaZero 实战:从零学下五子棋(附代码)

雷锋网(公众号:雷锋网) AI 科技评论按,本文作者一缕阳光,本文首发于知乎专栏强化学习知识大讲堂,雷锋网 AI 科技评论获其授权转载。2 个多月前,AlphaGo Zero 横空出世,完全从零开始,仅通过自我对弈就能天下无敌,瞬间刷爆朋友圈,各路大神分分出来解读,惊叹于其思想的简单、效果的神奇。...

2018-01-18 10:30:47

阅读数:2946

评论数:1

深度强化学习的18个关键问题

深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两天我阅读了一篇猛文Deep Reinforcement Learning: An Overview ,作者排山倒海的引用了200多篇文献,阐述强化学习未来的方向。原文归纳出深度强化学习中的常见科学问题,并列出了目前解法与相关综述,...

2017-12-23 01:08:58

阅读数:1444

评论数:0

Proximal Policy Optimization Algorithms

Proximal Policy Optimization Algorithms John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov (Submitted on 20 Jul 2017...

2017-08-23 05:59:28

阅读数:1469

评论数:0

业界 | OpenAI提出强化学习近端策略优化,可替代策略梯度法

选自OpenAI 机器之心编辑部 参与:蒋思源、Smith 近日,OpenAI 发布了一种新型的强化学习算法,近端策略优化(Proximal Policy Optimization/PPO)算法,该算法的实现和调参十分简单,并且它的性能甚至要超过现阶段最优秀的方法。因...

2017-07-21 13:28:32

阅读数:1483

评论数:0

深度增强学习前沿算法思想【DQN、A3C、UNREAL,简介】

作者:Flood Sung,CSDN博主,人工智能方向研究生,专注于深度学习,增强学习与机器人的研究。 责编:何永灿,欢迎人工智能领域技术投稿、约稿、给文章纠错,请发送邮件至heyc@csdn.net 本文为《程序员》原创文章,未经允许不得转载,更多精彩文章请订阅2017年《程序员》 ...

2017-07-14 00:03:47

阅读数:2708

评论数:0

深度强化学习 Deep Reinforcement Learning 学习整理

这学期的一门机器学习课程中突发奇想,既然卷积神经网络可以识别一副图片,解决分类问题,那如果用神经网络去控制‘自动驾驶’,在一个虚拟的环境中不停的给网络输入车周围环境的图片,让它去选择前后左右中的一个操作,并给予适当的反馈,是否能够把‘驾驶问题’,转化为分类的问题,用神经网络解决呢。 和经典的强化...

2017-07-14 00:00:04

阅读数:8272

评论数:1

解读continuous control with deep reinforcement learning(DDPG)

版权声明:本文为博主原创文章,未经博主允许不得转载。 博主:shenshikexmu 联系方式:shenshikexmu@163.com 缘起 DDPG,是Google Deepmind第一篇关于连续动作的深度加强学习论文(是否第一篇存疑)。DQN(Deep Q Netwo...

2017-07-13 17:53:08

阅读数:836

评论数:1

Temporal-Difference (TD) Learning

【上一节蒙特卡洛方法(Monte Carlo Method)】   Temporal-difference (TD) learning可以说是增强学习的中心,它集成了蒙特卡洛思想和动态编程(dynamic programming, DP)思想,像蒙特卡洛方法一样,TD 方法不需要环境的动态模...

2017-07-11 15:30:33

阅读数:638

评论数:0

强化学习族谱

https://github.com/tigerneil/deep-reinforcement-learning-family deep-reinforcement-learning-records Explicitly show the relationships bet...

2017-06-18 02:01:17

阅读数:695

评论数:0

Introduction to Monte Carlo Tree Search

https://jeffbradberry.com/posts/2015/09/intro-to-monte-carlo-tree-search/ Introduction to Monte Carlo Tree Search Mon 07 September 2015 by...

2017-05-01 17:27:43

阅读数:6849

评论数:0

蒙特卡洛树搜索 MCTS

什么是 MCTS? 全称 Monte Carlo Tree Search,是一种人工智能问题中做出最优决策的方法,一般是在组合博弈中的行动(move)规划形式。它结合了随机模拟的一般性和树搜索的准确性。 MCTS 受到快速关注主要是由计算机围棋程序的成功以及其潜在的在众多难题上的应用所致。超越...

2017-05-01 02:46:22

阅读数:6886

评论数:0

reinforce

I am studying RL with reinforcement/reinforce.py in pytorch/examples. I have some questions about it. What does action.reinforce(r)22 internally d...

2017-04-26 00:15:47

阅读数:5912

评论数:0

pytorch rl code

Asynchronous Advantage Actor Critic (A3C) from "Asynchronous Methods for Deep Reinforcement Learning" https://github.com/ikostrikov/pytorc...

2017-04-26 00:13:37

阅读数:6768

评论数:0

论文笔记:Mastering the game of Go with deep neural networks and tree search

背景:完全信息博弈与MCTS算法 要完全弄清AlphaGo背后的原理,首先需要了解一下AI在博弈游戏中常用到的蒙特卡洛树搜索算法——MCTS。 在一个完全信息下的博弈游戏中,如果所有参与者都采取最优策略,那么对于游戏中的任意一个局面ss,总有一个确定性的估值函数v∗(s)v∗(s)可以...

2017-04-24 22:54:27

阅读数:6883

评论数:0

OpenAI Gym 入门与提高(一) Gym环境构建与最简单的RL agent

Openai gym是一个用于开发和比较RL算法的工具包,与其他的数值计算库兼容,如tensorflow或者theano库。现在主要支持的是python语言,以后将支持其他语言。gym文档在https://gym.openai.com/docs。 Openai gym包含2部分: 1、...

2017-04-22 00:36:17

阅读数:12660

评论数:0

Continuous control with deep reinforcement learning

https://arxiv.org/abs/1509.02971 Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silve...

2017-04-21 14:22:31

阅读数:6906

评论数:0

Policy Gradient Methods for Reinforcement Learning with Function Approximation

Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining a policy f...

2017-04-20 23:53:39

阅读数:6600

评论数:0

Combining policy gradient and Q-learning

https://arxiv.org/abs/1611.01626 Brendan O'Donoghue, Remi Munos, Koray Kavukcuoglu, Volodymyr Mnih (Submitted on 5 Nov 2016 (v1), last revised 7 ...

2017-04-20 11:11:49

阅读数:6968

评论数:0

Resources for Reinforcement Learning: Theory and Practice

Week 0: Class Overview, Introduction Slides from week 0: pdf. Week 1: Introduction and Evaluative Feedback Slides from Tuesday: pdf.Slides...

2017-04-19 18:15:10

阅读数:7267

评论数:0

DQN 从入门到放弃1 DQN与增强学习

1 前言 深度增强学习Deep Reinforcement Learning是将深度学习与增强学习结合起来从而实现从Perception感知到Action动作的端对端学习End-to-End Learning的一种全新的算法。简单的说,就是和人类一样,输入感知信息比如视觉,然后通过深度神...

2017-04-19 16:39:39

阅读数:10301

评论数:2

提示
确定要删除当前文章?
取消 删除
关闭
关闭