基于Transformer的无监督大脑异常检测和分割

本文介绍了将VQ-VAE与Performer模型结合使用,实现无监督大脑异常检测和分割的方法。研究指出Transformer在处理医学影像异常检测任务中表现出优越性能,尤其是在有限数据和计算资源条件下。通过对比实验,验证了该方法在异常检测和像素级分割方面的高效性,特别是在小血管疾病、脱髓鞘病变和肿瘤等病理情况下的应用。
摘要由CSDN通过智能技术生成

VQ-VAE + Transformer真香!其中用到了Performer模型,表现SOTA!性能优于AE等网络。

Unsupervised Brain Anomaly Detection and Segmentation with Transformers
在这里插入图片描述

  • 作者单位:伦敦国王学院, 伦敦大学学院

  • 论文下载链接:https://arxiv.org/abs/2102.11650

病理性脑部外观可能如此异质,以致仅可理解为异常,异常是由其偏离正常状态而不是任何特定病理特征定义的。

在医学成像中最艰巨的任务中,检测此类异常需要正常大脑的模型,该模型必须将紧凑性与表征其结构组织的复杂的远程相互作用的表现力相结合。这些需求可以说,与其他当前的候选架构相比,Transformer具有更大的潜力可以满足,但是它们对数据和计算资源的需求却阻碍了它们的应用。

在这里,我们将矢量量化变分自编码器的潜在表示与自回归变换器的集成相结合,以实现在相对适度的数据方案内以低计算成本实现的,与健康的大脑成像数据的偏差所定义的无监督异常检测和分段。在涉及合成和实际病理病变的一系列实验中,我们将我们的方法与当前的最新方法进行了比较。

在这里插入图片描述

实验结果

在实际病变上,我

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值