iPhone上两秒出图,最快移动端Stable Diffusion模型来了!

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【目标跟踪和Transformer】交流群

转载自:机器之心

Stable Diffusion (SD)是当前最热门的文本到图像(text to image)生成扩散模型。尽管其强大的图像生成能力令人震撼,一个明显的不足是需要的计算资源巨大,推理速度很慢:以 SD-v1.5 为例,即使用半精度存储,其模型大小也有 1.7GB,近 10 亿参数,端上推理时间往往要接近 2min。

为了解决推理速度问题,学术界与业界已经开始对 SD 加速的研究,主要集中于两条路线:(1)减少推理步数,这条路线又可以分为两条子路线,一是通过提出更好的 noise scheduler 来减少步数,代表作是 DDIM [1],PNDM [2],DPM [3] 等;二是通过渐进式蒸馏(Progressive Distillation)来减少步数,代表作是 Progressive Distillation [4] 和 w-conditioning [5] 等。(2)工程技巧优化,代表作是 Qualcomm 通过 int8 量化 + 全栈式优化实现 SD-v1.5 在安卓手机上 15s 出图 [6],Google 通过端上 GPU 优化将 SD-v1.4 在三星手机上加速到 12s [7]。

尽管这些工作取得了长足的进步,但仍然不够快。

近日,Snap 研究院推出最新高性能 Stable Diffusion 模型,通过对网络结构、训练流程、损失函数全方位进行优化,在 iPhone 14 Pro 上实现 2 秒出图(512x512),且比 SD-v1.5 取得更好的 CLIP score。这是目前已知最快的端上 Stable Diffusion 模型!

051a5988566c4c5f830fc7b66730d837.png

SnapFusion: Text-to-Image Diffusion Model on Mobile Devices within Two Seconds

  • 论文地址:https://arxiv.org/abs/2306.00980

  • Webpage: https://snap-research.github.io/SnapFusion

核心方法

Stable Diffusion 模型分为三部分:VAE encoder/decoder, text encoder, UNet,其中 UNet 无论是参数量还是计算量,都占绝对的大头,因此 SnapFusion 主要是对 UNet 进行优化。具体分为两部分:(1)UNet 结构上的优化:通过分析原有 UNet 的速度瓶颈,本文提出一套 UNet 结构自动评估、进化流程,得到了更为高效的 UNet 结构(称为 Efficient UNet)。(2)推理步数上的优化:众所周知,扩散模型在推理时是一个迭代的去噪过程,迭代的步数越多,生成图片的质量越高,但时间代价也随着迭代步数线性增加。为了减少步数并维持图片质量,我们提出一种 CFG-aware 蒸馏损失函数,在训练过程中显式考虑 CFG (Classifier-Free Guidance)的作用,这一损失函数被证明是提升 CLIP score 的关键!

下表是 SD-v1.5 与 SnapFusion 模型的概况对比,可见速度提升来源于 UNet 和 VAE decoder 两个部分,UNet 部分是大头。UNet 部分的改进有两方面,一是单次 latency 下降(1700ms -> 230ms,7.4x 加速),这是通过提出的 Efficient UNet 结构得到的;二是 Inference steps 降低(50 -> 8,6.25x 加速),这是通过提出的 CFG-aware Distillation 得到的。VAE decoder 的加速是通过结构化剪枝实现。

786c9ae50b82afb48ea2e036241d4c64.png

下面着重介绍 Efficient UNet 的设计和 CFG-aware Distillation 损失函数的设计。

(1)Efficient UNet

我们通过分析 UNet 中的 Cross-Attention 和 ResNet 模块,定位速度瓶颈在于 Cross-Attention 模块(尤其是第一个 Downsample 阶段的 Cross-Attention),如下图所示。这个问题的根源是因为 attention 模块的复杂度跟特征图的 spatial size 成平方关系,在第一个 Downsample 阶段,特征图的 spatial size 仍然较大,导致计算复杂度高。

c45bda4013286ae21989bcb26041a450.png

为了优化 UNet 结构,我们提出一套 UNet 结构自动评估、进化流程:先对 UNet 进行鲁棒性训练(Robust Training),在训练中随机 drop 一些模块,以此来测试出每个模块对性能的真实影响,从而构建一个 “对 CLIP score 的影响 vs. latency” 的查找表;然后根据该查找表,优先去除对 CLIP score 影响不大同时又很耗时的模块。这一套流程是在线自动进行,完成之后,我们就得到了一个全新的 UNet 结构,称为 Efficient UNet。相比原版 UNet,实现 7.4x 加速且性能不降。

(2)CFG-aware Step Distillation

CFG(Classifier-Free Guidance)是 SD 推理阶段的必备技巧,可以大幅提升图片质量,非常关键!尽管已有工作对扩散模型进行步数蒸馏(Step Distillation)来加速 [4],但是它们没有在蒸馏训练中把 CFG 纳入优化目标,也就是说,蒸馏损失函数并不知道后面会用到 CFG。这一点根据我们的观察,在步数少的时候会严重影响 CLIP score。

为了解决这个问题,我们提出在计算蒸馏损失函数之前,先让 teacher 和 student 模型都进行 CFG,这样损失函数是在经过 CFG 之后的特征上计算,从而显式地考虑了不同 CFG scale 的影响。实验中我们发现,完全使用 CFG-aware Distillation 尽管可以提高 CLIP score, 但 FID 也明显变差。我们进而提出了一个随机采样方案来混合原来的 Step Distillation 损失函数和 CFG-aware Distillation 损失函数,实现了二者的优势共存,既显著提高了 CLIP score,同时 FID 也没有变差。这一步骤,实现进一步推理阶段加速 6.25 倍,实现总加速约 46 倍。

除了以上两个主要贡献,文中还有对 VAE decoder 的剪枝加速以及蒸馏流程上的精心设计,具体内容请参考论文。

实验结果

SnapFusion 对标 SD-v1.5 text to image 功能,目标是实现推理时间大幅缩减并维持图像质量不降,最能说明这一点的是下图:

592f94f875911c08df6cd6d03447ac30.png

该图是在 MS COCO’14 验证集上随机选取 30K caption-image pairs 测算 CLIP score 和 FID。CLIP score 衡量图片与文本的语义吻合程度,越大越好;FID 衡量生成图片与真实图片之间的分布距离(一般被认为是生成图片多样性的度量),越小越好。图中不同的点是使用不同的 CFG scale 获得,每一个 CFG scale 对应一个数据点。从图中可见,我们的方法(红线)可以达到跟 SD-v1.5(蓝线)同样的最低 FID,同时,我们方法的 CLIP score 更好。值得注意的是,SD-v1.5 需要 1.4min 生成一张图片,而 SnapFusion 仅需要 1.84s,这也是目前我们已知最快的移动端 Stable Diffusion 模型!

下面是一些 SnapFusion 生成的样本:

bda675fcf76d71e02152b3ab2c04cf91.png

更多样本请参考文章附录。

除了这些主要结果,文中也展示了众多烧蚀分析(Ablation Study)实验,希望能为高效 SD 模型的研发提供参考经验:

(1)之前 Step Distillation 的工作通常采用渐进式方案 [4, 5],但我们发现,在 SD 模型上渐进式蒸馏并没有比直接蒸馏更有优势,且过程繁琐,因此我们在文中采用的是直接蒸馏方案。

68940926ad153d08bd9d90168a67421a.png

(2)CFG 虽然可以大幅提升图像质量,但代价是推理成本翻倍。今年 CVPR’23 Award Candidate 的 On Distillation 一文 [5] 提出 w-conditioning,将 CFG 参数作为 UNet 的输入进行蒸馏(得到的模型叫做 w-conditioned UNet),从而在推理时省却 CFG 这一步,实现推理成本减半。但是我们发现,这样做其实会造成图片质量下降,CLIP score 降低(如下图中,四条 w-conditioned 线 CLIP score 均未超过 0.30, 劣于 SD-v1.5)。而我们的方法则可以减少步数,同时将 CLIP score 提高,得益于所提出的 CFG-aware 蒸馏损失函数!尤其值得主要的是,下图中绿线(w-conditioned, 16 steps)与橙线(Ours,8 steps)的推理代价是一样的,但明显橙线更优,说明我们的技术路线比 w-conditioning [5] 在蒸馏 CFG guided SD 模型上更为有效。

825cb369db973d14ae7433c95726c325.png

(3)既有 Step Distillation 的工作 [4, 5] 没有将原有的损失函数和蒸馏损失函数加在一起,熟悉图像分类知识蒸馏的朋友应该知道,这种设计直觉上来说是欠优的。于是我们提出把原有的损失函数加入到训练中,如下图所示,确实有效(小幅降低 FID)。

6ed2e29f495923360c3fbff9c74e8a21.png

总结与未来工作

本文提出 SnapFusion,一种移动端高性能 Stable Diffusion 模型。SnapFusion 有两点核心贡献:(1)通过对现有 UNet 的逐层分析,定位速度瓶颈,提出一种新的高效 UNet 结构(Efficient UNet),可以等效替换原 Stable Diffusion 中的 UNet,实现 7.4x 加速;(2)对推理阶段的迭代步数进行优化,提出一种全新的步数蒸馏方案(CFG-aware Step Distillation),减少步数的同时可显著提升 CLIP score,实现 6.25x 加速。总体来说,SnapFusion 在 iPhone 14 Pro 上实现 2 秒内出图,这是目前已知最快的移动端 Stable Diffusion 模型。

未来工作:

1.SD 模型在多种图像生成场景中都可以使用,本文囿于时间,目前只关注了 text to image 这个核心任务,后期将跟进其他任务(如 inpainting,ControlNet 等等)。

2. 本文主要关注速度上的提升,并未对模型存储进行优化。我们相信所提出的 Efficient UNet 仍然具备压缩的空间,结合其他的高性能优化方法(如剪枝,量化),有望缩小存储,并将时间降低到 1 秒以内,离端上实时 SD 更进一步。

参考文献

[1] Denoising Diffusion Implicit Models, ICLR’21

[2] Pseudo Numerical Methods for Diffusion Models on Manifolds, ICLR’22

[3] DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps, NeurIPS’22

[4] Progressive Distillation for Fast Sampling of Diffusion Models, ICLR’22

[5] On Distillation of Guided Diffusion Models, CVPR’23

[6] https://www.qualcomm.com/news/onq/2023/02/worlds-first-on-device-demonstration-of-stable-diffusion-on-android

[7] Speed Is All You Need: On-Device Acceleration of Large Diffusion Models via GPU-Aware Optimizations, CVPR’23 Workshop

点击进入—>【扩散模型和Transformer】交流群

最新CVPR 2023论文和代码下载

 
 

后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF

扩散模型和Transformer交流群成立
扫描下方二维码,或者添加微信:CVer333,即可添加CVer小助手微信,便可申请加入CVer-扩散模型或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。
一定要备注:研究方向+地点+学校/公司+昵称(如扩散模型或者ransformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

▲扫码或加微信号: CVer333,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉,已汇集数千人!

▲扫码进星球
▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看4b26c6528fc74b8613669b48234da754.gif

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在本地计算机上搭建Stable Diffusion模型可能会遇到以下困难: 1.计算资源限制:Stable Diffusion模型需要大量的计算资源,包括高速处理器和大量的内存。如果本地计算机的计算资源不足,将难以搭建和运行模型。 2.软件环境:Stable Diffusion模型需要使用特定的软件和库,如Python、NumPy、SciPy、Matplotlib等。在本地计算机上搭建这些软件环境可能会遇到版本不兼容、依赖关系复杂等问题,需要花费大量时间和精力进行调试和解决。 3.数据处理:Stable Diffusion模型需要处理大量的数据,包括输入数据和输出数据。在本地计算机上处理大量数据可能会导致内存不足、速度慢等问题,需要优化代码和算法。 4.模型参数:Stable Diffusion模型需要设置许多参数,如时间步长、空间步长、扩散系数、边界条件等。这些参数的选择需要经验和调试,否则可能会导致模型不收敛或者收敛速度过慢。 5.模型验证:Stable Diffusion模型需要进行模型验证和测试,以确保模型的正确性和可靠性。这需要使用一些标准的测试数据集和评估指标,但是这些数据集和指标可能不易获取,需要进行大量的数据收集和处理工作。 综上所述,搭建Stable Diffusion模型需要克服许多困难,包括计算资源限制、软件环境、数据处理、模型参数和模型验证等方面。因此,最好选择云计算平台或者使用已有的开源库来简化这些工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值