CVPR 2024 | Real-IAD:大规模工业异常检测数据集!

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【Mamba和异常检测】交流群

添加微信号:CVer111,小助手会拉你进群!

扫描下方二维码,加入CVer学术星球!可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪,强烈推荐!

bd8e28b6e7cf73d3ead7a2b8bbd040a3.png

【CVPR 2024】真实产线下大规模工业异常检测数据集!涵盖30类物体5个视角8种缺陷类型150K高分辨率图像!

5bd00c58715a3eb13f106bee38c3e31d.png

(来自上海交通大学,腾讯优图实验室,复旦大学,荣旗工业科技,上海计算机软件技术开发中心)         

Title:: A Real-World Multi-View Dataset for Benchmarking Versatile Industrial Anomaly Detection

主页:https://realiad4ad.github.io/Real-IAD/

动机:为什么构建Large-scale Real-world Real-IAD数据集

  • 一方面,大多数最先进的方法在MVTec / VisA等主流数据集上已经达到饱和(AUROC超过99%),无法很好地区分方法之间的差异,且由于难度较小而与实际应用场景之间存在较大差距。(需要更具挑战性的数据集来支持AD领域的进一步研究)

  • 另一方面,各种新的实用异常检测设置的研究受到数据集规模的限制(比如带噪和小样本更贴近实际应用的setting),存在评估结果过拟合的风险。(需要更大规模的数据集)

  • 工业生产中的良率通常介于60%-100%之间,与现有的100%良率实验setting不符。(需要更具实际应用价值的setting,即我们提出的Fully Unsupervised Industrial Anomaly Detection,FUIAD)             

Real-IAD数据集特性:

  • 更多的类别:30类真实产线物料

  • 大规模数据量:150K数据

  • 多种材料:金属,塑料,木材,陶瓷和混合材料

  • 多种缺陷类别:缺失、划伤、裂纹、脏污、破洞、变形、凹坑、破损

  • 多视角:5个拍摄角度(顶拍+4个侧拍)

  • 更高的分辨率:2K~5K

  • 支持多种实验设置:1)FUIAD;2)多视角AD;3)无监督AD;4)Zero-/Few-shot AD;5)带噪AD等

与主流的2D异常检测数据集规模及属性对比如下表

8a69673d15b28ccc86cbab4948b3adfa.png

5个视角的采集效果图示例,包含两种典型异常场景:

1)缺陷可以在一个sample中的每个view都可见

2)缺陷仅在一个sample中部分view上可见

这更具有实际意义和更大的挑战性,将AD推向实际应用迈出了新的一步!f8b63dea6840a5c4784e7a14236b3b8f.png

本文贡献:

  • 提出了一个新的Real-IAD数据集,它比现有的主流数据集大十倍以上。它包括30类对象,每类对象包含5个拍摄角度,共计150K高分辨率图像。Real-IAD具有更大的缺陷面积和缺陷比例范围,能够更好地区分不同方法的性能,满足IAD的各种研究设置。

  • 基于Real-IAD数据集构建了一个更接近实际应用场景的FUIAD(Fully Unsupervised Industry Anomaly Detection)设置,其中仅使用大多数生产线的成品率大于60%的自然存在约束,而不引入额外的手动注释。

  • 我们报告了常用的IAD方法在Real-IAD数据集上在几种设置下的性能,并提供了一个极具挑战性的基准,以促进异常检测领域的发展。

下面拆解Real-IAD数据集收集的具体过程,如下图所示:   

180f578dd4776f53dfeabea7665af79e.png

物料准备及缺陷产品构建

材料:包含金属,塑料,木材,陶瓷和混合材料

缺陷类型:包含缺失、划伤、裂纹、脏污、破洞、变形、凹坑、破损共8种

原型采集设备准备:

包含1个顶拍相机加4个侧拍相机

工业级数据收集、标注、清洗过程

使用3个基于HRNet-32w主干网络的Cascade RCNN进行检测、交叉验证,直到检测结果偏差小于预定条件(AP基本不变,修改标注的图片数/instance足够小)

Real-IAD数据统计分析    

e7d304bf14ebca890848bf26320992f7.png

更多的【数据集信息】、【下载方式】及【Benchmark结果】可移步项目主页:

主页:https://realiad4ad.github.io/Real-IAD/

基于该数据集的已有开源方法推荐:

AD Benchmark:

https://github.com/zhangzjn/ader

MambaAD [NeurIPS’24]:

https://github.com/lewandofskee/MambaAD

Dinomaly:

https://github.com/guojiajeremy/Dinomaly    

 
 

何恺明在MIT授课的课件PPT下载

 
 

在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!

ECCV 2024 论文和代码下载

在CVer公众号后台回复:ECCV2024,即可下载ECCV 2024论文和代码开源的论文合集

CVPR 2024 论文和代码下载

在CVer公众号后台回复:CVPR2024,即可下载CVPR 2024论文和代码开源的论文合集

Mamba和异常检测交流群成立

 
 
扫描下方二维码,或者添加微信号:CVer111,即可添加CVer小助手微信,便可申请加入CVer-Mamba或者异常检测微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。
一定要备注:研究方向+地点+学校/公司+昵称(如Mamba或者异常检测+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

 
 
▲扫码或加微信号: CVer111,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集上万人!

▲扫码加入星球学习
 
 
▲点击上方卡片,关注CVer公众号
整理不易,请赞和在看
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值