霸榜顶会的特征融合,再出神作!

特征融合再出神操作!作者通过逐元素相乘的方法,把输入映射到高维非线性特征空间,在准确率远超SOAT的同时,速度飙升300%,并被CVPR24收录。

除此以外,近来还出现了不少可圈可点的新思路!比如,基于频域做特征融合的MLWNet,运行时间直降60%;基于聚合函数做特征融合的SMFANet,FLOPs降低57%,速度提升10倍……

实际上,特征融合一直是重要的研究方向,也是高效涨点的抓手!它能将不同来源、不同类型的特征信息进行整合,为模型提供全面、丰富的数据表示。

因此,非常推荐想发论文的伙伴多关注。为方便大家研究的进行,我给大家梳理了10类前沿特征融合方法,除前文所提,还包括:注意力融合、卷积融合、嵌入融合、堆叠融合等。每种方法都提供了参考论文和源码,共33篇

扫描下方二维码,回复「33特融

免费获取全部论文合集及项目代码

e18a9fed980e04779cebd036ddaa22dc.jpeg

频域融合

将信号或图像从时域转换到频域,提取高频特征

Fourier-enhanced Implicit Neural Fusion Network for Multispectral and Hyperspectral Image Fusion

内容:论文介绍了一种名为FeINFN的新型网络,专门用于多光谱和高光谱图像融合MHIF任务。该网络利用傅里叶变换将隐式神经表示INR从空间域转换到频率域,以增强图像中的高频信息,并提出了一种新的解码器,使用复高斯小波激活函数来增强INR特征的交互。

5b129a22e24651388793b0f144735de5.png

注意力融合

使用注意力机制对不同特征进行融合,以提高模型对重要特征的关注度。

Separable Self and Mixed Attention Transformers for Efficient Object Tracking

内容:论文提出了一种名为SMAT的轻量级目标跟踪架构,它利用可分离的自注意力和混合注意力变换器来有效地融合模板和搜索区域的特征,以生成更优越的特征编码,并通过对编码特征进行全局上下文建模来实现鲁棒的目标状态估计。SMAT在多个基准数据集上超越了相关轻量级跟踪器的性能,同时在CPU上以37帧每秒、GPU上以158帧每秒的速度运行,并具有3.8M的参数量。

86922ee00135c46d0082dc4111ce9c29.png

扫描下方二维码,回复「33特融

免费获取全部论文合集及项目代码

27ffbd291532c04464826bf9f8c55f79.jpeg

卷积融合

使用卷积操作对不同特征进行融合,适用于图像或序列数据的特征融合。

Asymmetric Convolution: An Efficient and Generalized Method to Fuse Feature Maps in Multiple Vision Tasks

内容:论文提出一种高效且通用的特征融合方法,通过在不同视觉任务中对特征图进行不对称卷积操作,增强特征表达能力,以提高多种视觉任务的性能。这种方法通过在特征融合过程中引入空间不对称性,使得网络能够捕捉到更加丰富的上下文信息,从而在诸如目标检测、图像分割等任务中取得更好的效果。

29a392270d533440ee60a5cf1a916e9b.jpeg


乘法融合:

将不同特征相乘得到新的融合特征,适用于数值型特征的融合

Rewrite the Stars

内容:论文深入探讨了“星操作”(逐元素乘法)在神经网络设计中的潜力,揭示了其将输入映射到高维非线性特征空间的能力,类似于核技巧,但无需增加网络宽度。研究者们提出了一个名为StarNet的原型网络,该网络结构紧凑、效率高效,在低延迟下展现出了令人印象深刻的性能,验证了星操作在构建高效网络中的潜力。

32c980ec59ceb5b9fc5faef5927c96c2.png

嵌入融合

使用嵌入模型将不同特征进行融合

MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate Time  Series Forecasting

内容:论文介绍了一种名为MSGNet的深度学习模型,旨在捕捉多变量时间序列预测中不同时间尺度下的多变序列间相关性。MSGNet利用频域分析和自适应图卷积来提取显著的周期模式,并将时间序列分解到不同的时间尺度上。模型结合了自注意力机制来捕获序列内依赖关系,并引入了自适应混合图卷积层来自动学习每个时间尺度内的不同序列间相关性。通过在多个真实世界数据集上的广泛实验,论文展示了MSGNet的有效性,并证明了其在面对分布外样本时的强泛化能力。

11f5eaa177235fa06a4c2110ce5b2264.png

扫描下方二维码,回复「33特融

免费获取全部论文合集及项目代码

7cb88c4122cb96682697bae1d724e0ba.jpeg

03-18
<think>好的,我现在需要回答用户关于SMFANet的问题。首先,用户提到了SMFANet架构或实现细节,但根据提供的引用内容,引用[1]是关于FPGA设计的,引用[2]涉及架构不支持的错误,引用[3]讨论神经网络架构搜索(NAS)和相关论文,但没有直接提到SMFANet。因此,我需要确认是否有其他资料或来源提及SMFANet。 首先,我会检查现有的引用内容。引用[3]中提到了多种NAS方法,如基于Boosting、MCTS、贝叶斯优化等的论文,但SMFANet可能不在其中。用户可能将SMFANet与这些方法混淆,或者它可能是某个特定论文中的模型,但未被广泛引用。此外,用户的问题可能涉及架构搜索或特定网络结构,但现有引用没有提供相关信息。 接下来,我应该考虑SMFANet是否是某个领域的新兴模型,或者是否存在拼写错误。例如,是否应为SFANet或其他类似缩写?可能需要用户进一步澄清。此外,可以建议用户提供更多上下文,例如论文标题、作者或应用领域,以便更准确地查找信息。 同时,根据引用[3]中的内容,可以推测SMFANet可能与神经网络架构搜索相关,可能是一种自动设计的网络结构,但具体细节不明。在这种情况下,建议用户查阅最新的学术论文或开源项目,如GitHub,以获取实现细节。另外,可以提及常见的NAS框架,如DARTS、ENAS等,作为可能的替代或相关方法。 总结来说,由于现有引用未提供SMFANet的具体信息,回答应指这一点,并建议用户检查资料来源或提供更多细节。同时,可以引导用户参考相关的神经网络架构搜索文献,或推荐他们查阅特定数据库如arXiv、Google Scholar等。</think>关于SMFANet的架构或实现细节,目前公开资料中尚未发现直接相关的技术描述。根据您提供的引用内容,可能与以下方向相关: 1. **神经网络架构搜索(NAS)** SMFANet可能是基于NAS技术自动生成的网络架构。例如引用[3]中提到的《Neural architecture search with bayesian optimisation and optimal transport》等论文,展示了通过优化算法自动设计网络结构的方法[^3]。这类网络通常包含动态调整的卷积模块或通道注意力机制。 2. **FPGA实现的特殊优化** 若与硬件相关,可能需要参考引用[1]中《Advanced FPGA Design Architecture, Implementation, and Optimization》提到的硬件适配方法,例如通过流水线优化或资源复用策略提升推理效率[^1]。 3. **架构兼容性问题** 引用[2]中提到的"Architecture not supported"错误提示[^2],建议检查框架版本、硬件驱动和依赖库是否满足要求。部分新型网络需要特定编译环境支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值