YOLOv13来了!清华大学提出新一代实时目标检测器

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【目标检测】投稿交流群

添加微信号:CVer2233,小助手会拉你进群!

扫描下方二维码,加入CVer学术星球!可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪,强烈推荐!

图片

YOLOv13 论文和代码下载

在CVer微信公众号后台回复:YOLOv13,即可下载该论文和项目代码!

一张图看看 YOLOv13 的性能表现!超越YOLOv12、YOLO11等SOTA模型!

PS:按这个进度,今年应该还能看到YOLOv14、YOLOv15模型~期待一波!

单位:清华大学, 太原理工, 北理工等
代码:https://github.com/iMoonLab/yolov13
论文:https://arxiv.org/abs/2506.17733

YOLOv13 来了

YOLOv13 隆重发布!新一代实时检测器,拥有顶尖性能和效率。YOLOv13 系列包含四个版本:Nano、Small、Large和X-Large。

YOLOv13框架

YOLOv13 由以下创新技术提供支持:

1. HyperACE:基于超图的自适应相关增强

  • 将多尺度特征图中的像素视为超图顶点。

  • 采用可学习的超边构建模块,自适应地探索顶点之间的高阶相关性。

  • 利用线性复杂度的消息传递模块,在高阶相关性的指导下有效地聚合多尺度特征,从而实现对复杂场景的有效视觉感知。

2. FullPAD:Full-Pipeline 聚合和分发范式

  • 使用 HyperACE 聚合主干网络的多尺度特征,并提取超图空间中的高阶相关性。

  • FullPAD 范式进一步利用三个独立的通道,将这些相关性增强的特征分别转发到骨干网络与neck的连接、neck内部层以及neck与头部的连接。通过这种方式,YOLOv13 实现了整个流程的细粒度信息流和表征协同。

  • FullPAD 显著改善了梯度传播,提升了检测性能。

3. 通过基于深度可分离卷积块的模型轻量化

  • 用基于深度可分离卷积(DSConv、DS-Bottleneck、DS-C3k、DS-C3k2)构建的块取代大核卷积,在保留感受野的同时,大幅减少参数和计算量。

  • 在不牺牲准确率的情况下实现更快的推理速度。

YOLOv13 将超图计算与端到端信息协同无缝结合,提供更准确、更稳健、更高效的实时检测解决方案。

YOLOv13 实验结果

YOLOv13 在COCO数据集上实现了SOTA性能!

YOLOv13论文和代码下载

在CVer微信公众号后台回复:YOLOv13,即可下载该论文和项目代码!

何恺明在MIT授课的课件PPT下载

在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!

CVPR 2025 论文和代码下载

在CVer公众号后台回复:CVPR2025,即可下载CVPR 2025论文和代码开源的论文合集

ECCV 2024 论文和代码下载

在CVer公众号后台回复:ECCV2024,即可下载ECCV 2024论文和代码开源的论文合集

目标检测交流群成立

扫描下方二维码,或者添加微信号:CVer2233,即可添加CVer小助手微信,便可申请加入CVer-目标检测微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。
一定要备注:研究方向+地点+学校/公司+昵称(如目标检测+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

▲扫码或加微信号: CVer2233,进交流群
CVer计算机视觉(知识星球)人数破万!如果你想要了解最新最快最好的CV/DL/AI论文、实战项目、行业前沿、从入门到精通学习教程等资料,一定要扫描下方二维码,加入CVer知识星球!最强助力你的科研和工作!

▲扫码加入星球学习

▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值