用python进行训练步骤:
- 导入数据 import the data
- 清理数据 clean the data
- 把数据分为训练和验证部分 split the data into training and test sets
- 创建一个模型 create a model
- 训练模型 train the model
- 创建预测 make predictions
- 打分评估 score and evaluate.
以DecisionTreeClassifier为例:
直接把数据灌入模型,然后预测
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
music_data = pd.read_csv('music.csv')
x = music_data.drop(columns=['genre'])
y = music_data['genre']model = DecisionTreeClassifier()
model.fit(x,y)
predictions = model.predict([[21,1],[22,0]])
print(predictions)
把数据分为训练数据和验证数据,再训练,之后打分。
import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score music_data = pd.read_csv('music.csv') x