学习人工智能-用python进行训练步骤,DecisionTreeClassifier模型,Graphviz Interactive Preview 预览.dot文件

用python进行训练步骤:

  1. 导入数据 import the data
  2. 清理数据 clean the data
  3. 把数据分为训练和验证部分 split the data into training and test sets
  4. 创建一个模型 create a model
  5. 训练模型 train the model
  6. 创建预测 make predictions
  7. 打分评估 score and evaluate.

以DecisionTreeClassifier为例:

直接把数据灌入模型,然后预测

import pandas as pd
from sklearn.tree import DecisionTreeClassifier


music_data = pd.read_csv('music.csv')
x =  music_data.drop(columns=['genre'])
y = music_data['genre']

model  = DecisionTreeClassifier()
model.fit(x,y)

predictions  = model.predict([[21,1],[22,0]])
print(predictions)

把数据分为训练数据和验证数据,再训练,之后打分。

import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

music_data = pd.read_csv('music.csv')
x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ankie(资深技术项目经理)

打赏就是赞赏,感谢你的认可!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值