策略梯度优化训练类:基于强化学习中的策略梯度优化

编写ppo库,定义一个基于强化学习中的策略梯度优化(PPO, Proximal Policy Optimization)的训练类 PPOPeftTrainer,继承自 PPOTrainer。这个库中还包含了一些辅助函数来支持PPO训练流程的特定需求。以下是对这些库组件的编写思路、编写目的和作用的详细分析:

编写思路

  1. 继承与融合PPOPeftTrainer 继承自 PPOTrainer 并整合了 PeftTrainer 的特性,以支持在PPO训练框架中实施参数高效的微调方法,如LoRA。

  2. 自定义生成与奖励计算:通过重写 generate 方法,调整生成文本的逻辑,以适应PPO训练的需要。此外,使用 replace_model 函数来在默认模型和奖励模型之间切换,从而计算奖励。

  3. 训练循环的定制:在 ppo_train 方法中,实现了PPO训练的具体逻辑,包括对模型生成的响应进行奖励评估,并据此优化模型参数。

编写目的

  • 支持基于PPO的训练:利用PPO方法优化生成模型的决策过程,提高模型在生成任务中的性能和稳定性。

  • 参数效率的模型训练:整合参数高效的技术,减少模型训练过程中需要的资源消耗,同时保持或提高模型的性能。

  • 灵活处理生成任务:通过自定义生成逻辑,提供对不同生成任务的灵活支持,如调整生成文本的长度和质量。

作用

  • PPOPeftTrainer

    class PPOPeftTrainer(PPOTrainer, PeftTrainer):
        r"""
        Inherits PPOTrainer.
        """
    
        def __init__(
                self,
                training_args: Seq2SeqTrainingArguments,
                finetuning_args: FinetuningArguments,
                callbacks: List[LogCallback],
                **kwargs
        ):
            PPOTrainer.__init__(self, **kwargs)
            self.args = training_args
            self.finetuning_args = finetuning_args
            self.log_callback = callbacks[0]
            self.state = TrainerState()
            self.data_collator = self.accelerator.prepare(kwargs["data_collator"]) # override the data collator of PPOTrainer
    • 该类继承自PPOTrainerPeftTrainer,结合了PPO训练的策略与PEFT的效率优化。这个复合训练器支持序列到序列的参数微调,特别是用于对话或文本生成任务的模型。具体功能如下:

    • __init__

      初始化函数中,设置了训练参数、微调参数以及日志回调。

    • ppo_train

      实现PPO训练循环。这里包括批处理大小的计算、训练步骤的设定、以及在训练过程中的日志记录和模型保存。此函数还负责生成响应(文本输出),并计算与PPO相关的奖励。

          def ppo_train(self, max_target_length: int) -> None:
              r"""
              Implements training loop for the PPO stage, like _inner_training_loop() in Huggingface's Trainer.
              "&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值