编写ppo
库,定义一个基于强化学习中的策略梯度优化(PPO, Proximal Policy Optimization)的训练类 PPOPeftTrainer
,继承自 PPOTrainer
。这个库中还包含了一些辅助函数来支持PPO训练流程的特定需求。以下是对这些库组件的编写思路、编写目的和作用的详细分析:
编写思路
-
继承与融合:
PPOPeftTrainer
继承自PPOTrainer
并整合了PeftTrainer
的特性,以支持在PPO训练框架中实施参数高效的微调方法,如LoRA。 -
自定义生成与奖励计算:通过重写
generate
方法,调整生成文本的逻辑,以适应PPO训练的需要。此外,使用replace_model
函数来在默认模型和奖励模型之间切换,从而计算奖励。 -
训练循环的定制:在
ppo_train
方法中,实现了PPO训练的具体逻辑,包括对模型生成的响应进行奖励评估,并据此优化模型参数。
编写目的
-
支持基于PPO的训练:利用PPO方法优化生成模型的决策过程,提高模型在生成任务中的性能和稳定性。
-
参数效率的模型训练:整合参数高效的技术,减少模型训练过程中需要的资源消耗,同时保持或提高模型的性能。
-
灵活处理生成任务:通过自定义生成逻辑,提供对不同生成任务的灵活支持,如调整生成文本的长度和质量。
作用
-
PPOPeftTrainer
:class PPOPeftTrainer(PPOTrainer, PeftTrainer): r""" Inherits PPOTrainer. """ def __init__( self, training_args: Seq2SeqTrainingArguments, finetuning_args: FinetuningArguments, callbacks: List[LogCallback], **kwargs ): PPOTrainer.__init__(self, **kwargs) self.args = training_args self.finetuning_args = finetuning_args self.log_callback = callbacks[0] self.state = TrainerState() self.data_collator = self.accelerator.prepare(kwargs["data_collator"]) # override the data collator of PPOTrainer
-
该类继承自
PPOTrainer
和PeftTrainer
,结合了PPO训练的策略与PEFT的效率优化。这个复合训练器支持序列到序列的参数微调,特别是用于对话或文本生成任务的模型。具体功能如下: -
__init__
初始化函数中,设置了训练参数、微调参数以及日志回调。
-
ppo_train
实现PPO训练循环。这里包括批处理大小的计算、训练步骤的设定、以及在训练过程中的日志记录和模型保存。此函数还负责生成响应(文本输出),并计算与PPO相关的奖励。
def ppo_train(self, max_target_length: int) -> None: r""" Implements training loop for the PPO stage, like _inner_training_loop() in Huggingface's Trainer. "&#
-