第二章 数列极限

数列极限的定义

这个x->∞ 我们认为是+-无穷与这个n不一样

性质数列极限函数极限
唯一性唯一唯一
有界性全局有界(所有项有界)局部有界(某邻域内有界)
保号性尾部保号(从某 N 开始)局部保号(某邻域内保号)

1. 唯一性(相同点)

  • 数列极限:若数列 {an} 收敛,则它的极限唯一。例如,若 lim⁡n→∞an=A,则 A 是唯一的。

  • 函数极限:若函数 f(x) 当 x→0(或 x→∞)时的极限存在,则极限值唯一。例如,若 lim⁡x→x0 f(x)=A则 A 唯一。

共同本质:无论数列还是函数,极限值若存在,必唯一。

2. 有界性(不同点)

  • 数列极限的全局有界性
    若数列 {an}收敛,则整个数列有界,即存在常数 M>0,使得对所有项都有 ∣an∣≤M。
    例子:数列 an=1/n 收敛于 0,且所有项满足 ∣an∣≤1。

  • 函数极限的局部有界性
    若 lim⁡x→x0f(x)=A,则存在 x0的某个去心邻域(如 0<∣x−x0∣<δ),使得在此邻域内 f(x)有界,即 ∣f(x)∣≤M。
    例子:f(x)=sin⁡(1/x)在 x→0时极限不存在,但若极限存在(如 f(x)=x在 x→1时),则在 x=1附近有界,但整体可能无界。

关键区别
数列的收敛性保证所有项有界(全局),而函数仅保证极限点附近有界(局部)。

3. 保号性(不同点)

  • 数列极限的保号性
    若 lim⁡n→∞an=A>0(或 A<0),则存在正整数 N,当 n>N时,an>0(或an​<0)。

  • 函数极限的局部保号性
    若 lim⁡x→x0f(x)=A>0(或 A<0),则存在 x0​ 的某个去心邻域,使得在此邻域内 f(x)>0(或 f(x)<0)。
    例子:函数 f(x)=x^2 在 x→0时极限为 0,但若极限非零(如 f(x)=x在 x→1时),则在 x=1附近 f(x)>0。

去帽子严格

关键区别
数列的保号性从某个 N 开始(离散的“尾部”),而函数的保号性在某个邻域内成立(连续的局部区域)。

定义

        这两个定义非常相似,都是用 ε 来描述趋近的过程。数列极限是针对离散的 n,而函数极限是针对连续的 x。数列的 n 只能取正整数,而函数的 x 可以取任意实数。

数列收敛与其子列收敛的关系

海涅定理 (归结原则)

  • 为什么用海涅定理:数列是离散的,无法直接用求导工具(如洛必达),但转为函数后可以。

  • 定理核心:函数极限存在 ⇨ 所有相关数列的极限相同,反之亦然。

        当计算数列的极限困难时,可以将数列看作函数的一部分,先求出对应的函数极限,再利用这个定理得出数列的极限值。它的核心思想是:如果所有趋近于某点的数列,对应的函数值都收敛到同一个数,那么函数的极限就是这个数;反之亦然。

        如果一个函数在某个点的极限存在,那么无论用什么样的数列趋近于这个点,函数在这个数列上的极限都应该和函数在该点的极限相同。以上例子说明f(x)在一点处连续,并不意味着f(x)在这点的附近连续。

夹b准则

放缩的常用方法如下

  • 已知方法
  • 未知方法(题设给出)一般第一问

(1)利用简单的放大与缩小

第一个不等式的下界依赖于最小值,可能极低(如接近 0),则 n⋅umin可趋近于 0,使得总和的下界极低,范围更广;

而第二个不等式的下界由最大值固定,约束更严格。

因此,第二个不等式是“有限的”(范围更窄),而第一个是“无限的”(范围更广)。

(2)利用重要不等式

绝对值不等式
  • ∣a±b∣≤∣a∣+∣b∣

  • ∣∣a∣−∣b∣∣≤∣a−b∣

  • 推广到 n 个实数:∣a1​±a2​±⋯±an​∣≤∣a1​∣+∣a2​∣+⋯+∣an​∣

均值不等式

 几何平均数小于或等于它们的算术平均数

  ​​​​​指数不等式

分数的不等式
三角不等式

⑩⑪⑫

⑫中值定理可得

(3)利用闭区间上连续函数必有最大值与最小值

(4)利用压缩映射原理。(简化版)

        核心思想是:如果每次迭代后的误差(与目标值的距离)都比前一步按固定比例缩小,那么数列最终会收敛到目标值。也就是原理一

        函数 f(x) 有一个不动点 a,并且在所有点上,它的斜率(导数)的绝对值都不超过 k<1。这意味着,无论从哪里开始,每一步应用 f(x),新的点都会比前一个点更接近 a,因为斜率的绝对值小于 1,所以距离会减少。

例子:

        假设我们有函数 f(x)=0.5​x+1。首先,找到它的不动点 a,即解方程 a=0.5​a+1。所以,不动点是 a=2。

接下来,计算导数f′(x)=0.5​。因为 ∣f′(x)∣=0.5​<1所以满足原理二的条件。

现在,假设我们从 x1​=0 开始,生成数列:


        假设你每次调整数值时,误差都会打一个折扣(比如每次都减少一半)。只要折扣力度足够大(折扣因子在0到1之间),经过无数次调整后,误差会变得无限小,最终精确命中目标。

现在,假设我们从 x1​=5 开始

(5)利用题设条件来推证(这往往是解答题的第1问

例题

(1)利用简单的放大与缩小

单调有界准则(单调有界准则是讨论数列极限存在的两个最重要的准则之一,另外一个是夹逼准则)

我们判断是否极限存在,先看判断单调,再看界限:

如何看单调:

{Xn}收敛于a的速度问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值