(15-8)基于时间序列预测的比特币自动交易系统:使用时间序列法分解数据

本文介绍了如何使用Python库yfinance获取比特币价格数据,计算收益率,并通过plotly.express进行数据可视化,分别展示了价格随时间和收益率随时间的变化趋势,以便进行时间序列分解分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.5.8  使用时间序列法分解数据

接下来将使用时间序列分解的方法来分析数据,通过将时序数据拆解为趋势、季节性和残差等组成部分,以更好地理解数据的变化趋势。

(1)使用库yfinance获取了自2020年1月1日至2022年1月31日期间的比特币(BTC)价格数据。然后,通过计算每日收益率,得到了比特币的收益率数据(returns)。

tickerSymbol = 'BTC-USD'
data = yf.Ticker(tickerSymbol)
prices = data.history(start='2020-01-01', end='2022-01-31').Close
returns = prices.pct_change().dropna()
returns
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值