1.5.8 使用时间序列法分解数据
接下来将使用时间序列分解的方法来分析数据,通过将时序数据拆解为趋势、季节性和残差等组成部分,以更好地理解数据的变化趋势。
(1)使用库yfinance获取了自2020年1月1日至2022年1月31日期间的比特币(BTC)价格数据。然后,通过计算每日收益率,得到了比特币的收益率数据(returns)。
tickerSymbol = 'BTC-USD'
data = yf.Ticker(tickerSymbol)
prices = data.history(start='2020-01-01', end='2022-01-31').Close
returns = prices.pct_change().dropna()
returns