(13-1)服装推荐系统:背景介绍+系统分析+准备数据集

本文探讨了电子商务环境下,H&M如何利用机器学习和推荐算法创建服装推荐系统,以解决用户在海量商品中选择困难的问题。系统通过分析用户数据提供个性化推荐、多样性选择和实时更新,以提升购物体验和可持续性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

13.1  背景介绍

随着电子商务和在线购物的兴起,越来越多的消费者选择在网上购买服装和时尚商品。然而,在庞大的服装市场中找到适合个人喜好和风格的服装并不容易。这就导致了消费者面临了一个常见的问题:在众多的选择中,如何找到符合自己偏好的服装?

为了解决这个问题,服装推荐系统应运而生。服装推荐系统利用机器学习和推荐算法,根据用户的喜好、个人风格和其他相关因素,为用户提供个性化的服装推荐。通过分析用户的购物历史、喜好偏好、社交媒体数据等信息,推荐系统可以更好地理解用户的喜好和需求,并根据这些信息进行准确的推荐。服装推荐系统的目标是为用户提供以下优势:

  1. 个性化推荐:根据用户的个人喜好和风格,推荐系统能够筛选出最适合用户的服装款式、品牌和配件。
  2. 多样性推荐:推荐系统不仅关注用户的偏好,还会推荐一些与用户过去购买行为不同但可能引起兴趣的新款式和品牌,以提供更丰富的选择。
  3. 实时更新:推荐系统可以根据用户的最新行为和时尚趋势进行实时更新,确保推荐结果的时效性和准确性。
  4. 提供搭配建议:除了单品推荐,服装推荐系统还可以根据用户购买的服装搭配建议,帮助用户更好地搭配和组合服装,提供整体的时尚指导。
  5. 提升用户体验:通过为用户提供个性化的服装推荐,推荐系统可以提升用户的购物体验,节省用户的时间和精力,同时增加用户的满意度和忠诚度。

随着技术的不断进步和数据的积累,服装推荐系统的性能和准确度也在不断提高。通过使用机器学习、深度学习和大数据分析等技术,推荐系统能够更好地理解用户的需求和喜好,为用户提供个性化且准确的服装推荐,为用户的购物体验增添了更多的乐趣和便利性。

13.2  系统分析

在本节的内容中,将详细讲解本项目的基本知识,介绍项目的基本功能。

13.2.1  系统介绍

H&M集团是一个拥有53个在线市场和约4,850家门店的品牌和企业家族,旗下的在线商店为购物者提供了广泛的产品选择。但是由于选择太多,顾客可能无法快速找到他们感兴趣的或正在寻找的商品,最终可能不会购买。为了提升购物体验,产品推荐至关重要。更重要的是,帮助顾客做出正确选择也对可持续性有积极的影响,因为它减少了退货,从而减少了运输过程中的碳排放。本项目将使用H&M数据集,为顾客开发一个商品推荐系统,帮助用户实现完美的购物体验。

13.2.2  系统功能分析

产品推荐对于提升客户体验并帮助他们从庞大的产品库中找到合适的产品至关重要。当客户找到合适的产品时,他们往往会将该商品添加到购物车中,这有助于公司的收入。在本推荐系统中,整个推荐功能通过如下三部分实现:

  1. 候选生成
  2. 从生成的候选项中找到客户可能喜欢的相关商品
  3. 对生成的候选项进行排序

1候选生成模型

候选生成模型采用以下策略实现:

  1. 策略1:推荐过去1周内类似用户购买的商品。
  2. 策略2:推荐过去1周内最受欢迎的商品以及与这些商品一起购买的其他商品。
  3. 策略3:推荐去年同一时间最受欢迎的商品。

2查找与查询用户相关的商品

从前一步生成的候选项经过模型处理,该模型将根据用户的先前购买情况,对与查询用户相关的商品进行分类。该模型经过训练,利用商品图像学习用户和商品的潜在特征。该模型基于研究论文《基于端到端图像的时尚推荐》(End-to-End Image-Based Fashion Recommendation)的作者Shereen Elsayed、Lukas Brinkmeyer和Lars Schmidt-Thieme的思想。大多数基于图像的推荐模型都依赖于使用预训练的推荐系统网络来提取商品图像特征。该研究论文的作者提出通过联合训练整个图像网络和推荐模型,提取商品的潜在图像特征,并进一步改进图像特征以获得更好的表示。该模型利用经过校准的ResNet50组件提取商品的图像特征。

因此,本项目的主要思想是在训练模型学习用户和商品的潜在特征时,还会反向训练图像提取模型的最后几层,以微调图像嵌入。这将进一步有助于学习用户和商品的特征。

3对生成的候选项进行排序

经过筛选的候选项随后被传递给排序模型,以将最相关的商品排在首位。

13.3  准备数据集

本项目使用的数据集是H&M集团提供的,在里面包含了H&M商品信息和会员用户的购买信息,本项目将基于H&M提供的这个数据集对用户有针对性的推荐商品。

13.3.1  H&M介绍

H&M(Hennes & Mauritz)是一家瑞典时尚零售公司,成立于1947年。H&M是全球最大的时尚品牌之一,以提供时尚、质量良好且价格实惠的时尚服装而闻名。H&M以其多样化的产品线、时尚趋势的跟踪和敏捷的供应链而备受消费者喜爱。

H&M的产品包括男装、女装、儿童服装、鞋履、配饰和家居用品,公司定期推出新的设计合作系列,与知名设计师、时尚品牌和艺术家合作,为消费者带来独特的时尚选择。同时,H&M也致力于可持续发展,在其供应链中采取了许多环保和社会责任措施。

H&M在全球范围内拥有数千家实体门店,并通过其在线商店向全球消费者提供购物体验。公司秉承着"时尚与质量可及"的理念,不断推动时尚行业的发展和创新,并为广大消费者提供时尚、质量和可持续的服装选择。

13.3.2  H&M数据集介绍

本项目所使用的数据集的下载地址是:

https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/data

这个数据集是由瑞典的H&M公司提供的,它包含了一部分H&M顾客的购买数据,用于开展个性化时尚推荐竞赛。

在这个数据集中,可以找到H&M顾客的购买历史、点击记录和其他与购物行为相关的数据。这些数据被用于构建和训练机器学习模型,以便为H&M顾客提供个性化的时尚推荐。通过分析顾客的购买模式、喜好和行为,可以改进推荐系统的准确性和用户体验。

需要注意的是,这个数据集可能只包含了部分H&M顾客的数据,而不是全部顾客。此外,这个数据集可能经过一定的处理和匿名化,以保护顾客的隐私和数据安全。

如果大家对这个数据集感兴趣,可以通过上面的链接下载数据集,并使用它进行相关的分析、建模和研究。但是,请确保在使用数据集时遵守H&M公司的规定和条款。

H&M数据集中的内容如下:

  1. images:包含了与每个article_id相对应的图像的文件夹,图像被放置在以article_id的前三位数字开头的子文件夹中。请注意,并非所有的article_id值都有相应的图像。
  2. articles.csv:每个可购买的article_id的详细元数据。
  3. customers.csv:数据集中每个customer_id的元数据。
  4. sample_submission.csv:格式正确的示例提交文件。
  5. transactions_train.csv:训练数据,包括每个日期每个顾客的购买记录,以及其他信息。重复的行表示对同一物品的多次购买。您的任务是预测在训练数据期后的7天内,每个顾客将购买哪些article_id。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值