(20-1)基于强化学习的贪吃蛇游戏:项目介绍+游戏准备

在本章的这个项目中,利用生成对抗网络(GAN)生成逼真的假人脸图像。通过训练生成器和判别器模型,项目能够从随机噪声中生成高质量的人脸图像,并通过模型的训练过程优化生成图像的真实感。此外,项目提供了图像可视化工具,能够展示不同训练阶段生成的图像,从而评估生成器的效果。

3.1  项目介绍

将使用强化学习和一个简单的神经网络进行训练。对于神经网络,我们将使用 PyTorch。我们使用的游戏是一个用 Python 编写的贪吃蛇游戏,使用了 pygame 模块。在这个笔记本中,我们可能无法看到它的实际运行,但它会被训练,我们可以观察到它的进展!我会添加一些游戏和训练过程在我本地机器上运行的图片。当然,我也鼓励你在一个可以看到游戏窗口的地方运行这个代码。

3.2  游戏准备

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值