在本章的这个项目中,利用生成对抗网络(GAN)生成逼真的假人脸图像。通过训练生成器和判别器模型,项目能够从随机噪声中生成高质量的人脸图像,并通过模型的训练过程优化生成图像的真实感。此外,项目提供了图像可视化工具,能够展示不同训练阶段生成的图像,从而评估生成器的效果。
3.1 项目介绍
将使用强化学习和一个简单的神经网络进行训练。对于神经网络,我们将使用 PyTorch。我们使用的游戏是一个用 Python 编写的贪吃蛇游戏,使用了 pygame 模块。在这个笔记本中,我们可能无法看到它的实际运行,但它会被训练,我们可以观察到它的进展!我会添加一些游戏和训练过程在我本地机器上运行的图片。当然,我也鼓励你在一个可以看到游戏窗口的地方运行这个代码。