step 1 预处理
1.1转格式
将nifti原始图像,bvec,bval等文件打包成mif格式
#convert nifti to native format mif
mrconvert -fslgrad dwi.bvec dwi.bval dwi.nii \
dwi.mif -force
#creat a mask
dwi2mask dwi.mif - | maskfilter - dilate preproce_mask.mif -npass 3 -force
1.2 denoise
dwidenoise dwi.mif dwi_denoise.mif -noise noiselevel.mif \
-mask preproce_mask.mif -force
1.3 Gibbs Ring artifact
mrdegibbs dwi_denoise.mif dwi_denoise_degibbs.mif -force
1.4 头动和涡流矫正
使用FSL的涡流工具进行扩散图像预处理;如果可能,包括使用 FSL 的 topup 工具进行失真校正
dwifslpreproc dwi_denoise_degibbs.mif dwi_preprocessed.mif \
-rpe_none -pe_dir AP \
-eddy_options "--data_is_shelled --slm=linear --niter=5" -force
1.5 场矫正
# bias filed correction
dwibiascorrect ants dwi_preprocessed.mif biascorr.mif -bias biasfield.mif
1.6 对齐到T1
#aligment to T1w
flirt.fsl -dof 12 -cost normmi -ref T1w.nii.gz -in b0.nii -omat T_fsl.txt
transformconvert T_fsl.txt b0.nii T1w.nii.gz flirt_import T_DWItoT1.txt
mrtransform -linear T_DWItoT1.txt biascorr.mif dwi_align.mif -force
1.7 使用5ttgen进行脑组织分割
也就是把脑组织分割为皮层灰质,次皮层灰质,白质,CSF和病理组织
5ttgen可以使用的算法包括freesurfer, fsl, gif, hsvs
- fsl 算法 要求输入的图像必须是 T1-weighted image; 算法会默认进行大脑组织提取(BET),如果已经BET过,需添加-premask 参数
- freesurfer 算法 要求输入freesurfer分割的图像,任何包括aseg的都行
- 如果不想软件对影像进行修建可使用 -nocrop 参数
- 可以使用-nocleanup参数保存过程文件
示例: