本推文介绍了来自华威大学、克兰菲尔德大学、剑桥大学、牛津大学的研究团队在顶会AAAI-25 Bridge Program上发表的论文《KG4Diagnosis: A Hierarchical Multi-Agent LLM Framework with KnowledgeGraph Enhancement for Medical Diagnosis》。该论文提出了一种名为KG4Diagnosis 的层次化多智能体大模型框架,结合知识图谱增强技术,用于实现更高效、更精准的医疗诊断。该方法通过知识图谱提供医学领域的结构化知识,辅助大语言模型进行推理与决策;同时,框架中的多智能体协作机制能够模拟专家团队的诊断流程,层次化处理复杂病例。实验结果表明,KG4Diagnosis 在诊断准确性和推理效率上均显著优于现有方法,为智能医疗诊断领域提供了新的解决方案。
推文作者为陆新颖,审校为李杨和朱旺。
论文链接:https://arxiv.org/pdf/2412.16833
1. 会议介绍
第39届AAAI (Annual AAAI Conference on Artificial Intelligence)将于2025年2月25日至3月4日在美国费城隆重举行。AAAI会议起始于1980年,是人工智能领域久负盛名且极具影响力的国际顶级学术会议之一,由美国人工智能协会主办。该会议全面覆盖机器学习、自然语言处理、计算机视觉、机器人技术、多智能体系统、知识表示与推理等多项人工智能核心研究领域。AAAI是人工智能领域的顶级会议之一,也是中国计算机学会(CCF)A类会议。
2. 研究背景及主要贡献
2.1 研究背景
(1)医学诊断的挑战:随着医学领域的发展,疾病种类不断增加,诊断的难度也随之上升。尤其是对于复杂疾病和多模态的医学数据,传统的诊断方法往往无法提供精准有效的支持。
(2)人工智能与医疗结合的现状:近年来,人工智能在医学领域取得了一定进展,尤其是深度学习和自然语言处理技术被广泛应用于医学影像分析、病历数据处理等。然而,现有系统主要侧重于某一特定领域,缺乏跨领域、跨数据源的综合能力。
(3)知识图谱的潜力:知识图谱作为一种有效的数据表示方式,能够将大量医学知识结构化并形成关系网络,帮助人工智能模型理解复杂的医学知识。然而,传统的知识图谱构建方法依赖大量人工标注且对非结构化数据处理能力不足。
(4)多代理系统的优势:多代理系统通过多个智能体的合作,提高了系统的灵活性和多样性。在医疗诊断中,通过设计不同功能的代理,可以将系统的诊断能力从基础的疾病分类扩展到复杂的临床决策支持。
(5)研究问题:这篇论文要解决的问题是如何将大型语言模型与自动知识图谱构建相结合,以提高医疗诊断的准确性和效率。
(6)研究难点:处理复杂的医疗场景、维持专业知识、从非结构化医疗文本中提取有意义的信息、防止大型语言模型的幻觉问题。
2.2 本文的主要贡献
(1)提出KG4Diagnosis本文设计了一个模拟专家团队协作诊断的层次化多智能体框架,能够有效处理复杂病例,实现高效决策。其反映了现实世界的医疗系统,包括用于初步评估的通用概率智能体和针对362种常见疾病进行领域特定诊断的智能体。
(2)引入知识图谱增强
通过知识图谱提供医学领域的结构化背景知识,与大语言模型相结合,提升了诊断的准确性和解释性。开发了一种创新的端到端知识图谱构建流程,包含三个关键组成部分:语义驱动的实体提取、多维决策关系重建以及人类引导的知识扩展推理。
(3)在实际医疗场景中的应用价值
该论文展示了新框架在诊断过程中的协作能力,详细说明了如何通过构建知识图谱为AI系统提供支持,从而实现个性化医疗建议的生成。这种基于知识图谱的设计凸显了框架在医学领域的实际应用潜力。同时,该框架采用模块化设计,能够灵活整合领域特定的增强功能,为开发更加精准和高效的医学诊断系统提供了重要支持。
3. 方法
图1 KG4Diagnosis模型整体框架
KG4Diagnosis模型通过结合知识图谱构建与分层多代理框架,为医疗诊断提供了一个创新的解决方案。其核心思想是利用知识图谱挖掘医疗数据中的潜在关系,并通过分层代理的协作实现个性化诊断与推理。模型整体框架分为两部分。
3.1 知识图谱构建管道
知识图谱构建包括三个阶段:
阶段1:从输入的医疗文本中提取实体和关系。通过基于语义的实体提取和关系提取模块,将文本分割处理为符合知识图谱上下文约束的数据块。具体而言,利用BioBERT和医学本体提取医疗相关的实体与关系,并分别存储到专用数据库中。
阶段2:基于数据库构建医学知识图谱,并利用大型语言模型增强知识图谱的内容。LLMs可识别超出BioBERT提取能力范围的实体与关系,将其整合到知识图谱中,从而扩展图谱的覆盖范围和深度。
阶段3:通过人工指导进行推理与验证。由领域专家手动对知识图谱进行验证与扩展,以确保其准确性和可靠性。
3.2 分层多代理框架
分层多代理框架以知识图谱为基础,设计多个智能代理协同工作,包括以下三个阶段。
阶段1:GP-LLM:初级诊断代理,作为用户查询的初始处理界面,GP-LLM分析输入内容,计算初步诊断的信心度,并根据结果决定是否需要转诊至更专业的代理进行进一步诊断。
阶段2:专科Consultant-LLMs:专为特定医学领域优化的智能代理。每个代理专注于特定领域(如心血管疾病或内分泌系统),提供针对性的诊断支持,提升专业性与精准度。
阶段3:智能体间通信协议:以确保案例能够在不同代理之间无缝转移,同时在需要多方协作的情况下,能够整合不同代理的输入。最终,对于复杂查询,通过高级协作计算综合诊断结果的置信度。
4. 实验
图2 展示肥胖领域知识图谱的专业性
图2展示了专注于肥胖领域的知识图谱,突出其专业性与精确性。在展示了肥胖问题的复杂性的同时,突出了其核心状况以及与患者状态和减重手术相关的因素。此外,图中还描绘了相关药物和BMI分类,强调了这些元素在理解肥胖作为一种多因素健康问题中的相互关联性。
图3 知识图谱构建示例
图3则展示了完整的知识图谱结构,清晰地体现出疾病、症状与诊断模式之间的复杂相互联系。通过可视化可以直观地观察医学知识的层次化组织,从一般性的诊断模式到特定医学领域的路径分布清晰。这种层次结构不仅提升了知识导航的效率,还为系统的分层决策提供了有力支持。
图4 诊断对话的例子
诊断对话翻译
*患者:医生,我最近一直听到耳鸣,尤其是在晚上。感觉好像有持续的嗡嗡声,影响了我的睡眠和注意力。
*医生:您的耳鸣是持续性的,还是时有时无?您有没有其他症状,比如头痛、听力丧失或耳痛?
*AI:很抱歉听到您的不适。耳鸣可能由多种因素引起,如暴露于噪音、耳部感染、高血压或压力等。您最近有做过听力测试或耳部检查吗?这些检查可以帮助确定耳鸣的严重程度和可能的原因。
*患者:我之前做过一次听力测试,结果显示双耳有轻度听力损失,但没有感染的迹象。
*医生:测试结果表明,您的听力损失属于轻度,可能并不是引起耳鸣的主要原因。有时候,压力和情绪因素也可能引发耳鸣。最近您是否在工作或个人生活中承受了较大的压力?
*AI:根据您的测试结果,耳鸣可能与轻度听力损失、压力或其他因素有关。为了缓解症状,您可以尝试避免嘈杂环境、保持健康的睡眠习惯以及减少压力。如果耳鸣持续或加重,建议您咨询耳鼻喉科医生,看看是否需要进一步治疗。
图4展示了框架协作诊断过程以及模型如何帮助提供个性化的医疗建议:患者描述症状,医生提出澄清指导性问题,AI 提供解释和建议。
注:作者在论文中表明,鉴于该框架的广泛范围和创新的医学诊断方法,当前正在开发一个全面的基准测试,用于评估多个维度的性能,包括诊断准确性、幻觉预防和多代理协调效率。这个基准测试将为医学AI系统的评估提供标准化指标,并将在完成后通过GitHub仓库公开。即将发布的基准旨在为评估医学应用中的层次多代理系统建立新标准,促进未来在这一关键领域的研究与发展。
5. 总结与展望
论文提出了一种创新性的层次化多智能体大模型框架KG4Diagnosis,通过结合知识图谱增强技术和多智能体协作机制,为复杂医疗诊断任务提供了一种高效、精准的解决方案。实验结果表明,KG4Diagnosis 在诊断准确性、多模态数据处理能力和推理效率上均优于现有方法,展示了其在智能医疗领域的广泛潜力。然而,该框架仍存在一些挑战和改进空间。例如,如何进一步提升知识图谱的构建质量和实时更新能力,以应对医疗知识快速发展的需求;如何在真实医疗场景中有效应对噪声数据和异常情况;以及如何降低模型部署的计算资源需求,使其在资源受限的环境中广泛应用。未来的研究可以聚焦于知识图谱的动态优化、模型可解释性与鲁棒性的增强,以及与现有医疗系统的集成,为智能医疗诊断的实际落地提供更坚实的技术支持。