Python —— Pytorch训练集指令、测试数据指令

宣传一下相关文章(下面是效果):Python —— Windows10下配置Pytorch环境、进行训练模型并测试(完整流程,附有视频)

相关文章

     Python —— Windows10下配置Pytorch环境、进行训练模型并测试(完整流程,附有视频)

     Python —— Win10将Yolov5的.pt模型导出为.onnx模型

     OpenCv —— Win10使用OpenCv调用Yolov5的.pt导出的.onnx模型进行测试【CPU版Cv】(附源码)

正文 - 数据集训练命令
基线训练命令:
	python train.py --data data/voc-mask.yaml --cfg models/yolov5s-mask.yaml --weights weights/yolov5s.pt --batch-size 16 --epochs 50 --workers 4 --name base

使用Adam优化器训练命令:
	python train.py --data data/voc-mask.yaml --cfg models/yolov5s-mask.yaml --weights weights/yolov5s.pt --batch-size 16 --epochs 50 --workers 4 --adam --name base+adam
	
使用image-weights训练命令:
	python train.py --data data/voc-mask.yaml --cfg models/yolov5s-mask.yaml --weights weights/yolov5s.pt --batch-size 16 --epochs 50 --image-weights --workers 4 --name base+imgweights
	
使用label-smoothing训练命令:
	python train.py --data data/voc-mask.yaml --cfg models/yolov5s-mask.yaml --weights weights/yolov5s.pt --batch-size 16 --epochs 50 --workers 4 --label-smoothing 0.1 --name base+labelsmoothing
	
使用YOLOv5 P6训练命令:
	新建文件models/yolov5s6-mask.yaml, 然后修改配置参数
		# parameters
		nc: 2  # number of classes
	执行命令:
		python train.py --data data/voc-mask.yaml --cfg models/yolov5s6-mask.yaml --weights weights/yolov5s6.pt --batch-size 4 --epochs 50 --workers 4 --img-size 1280 --name base+P6
		
训练过程tensorboard可视化:
	tensorboard --logdir=./runs

正文 - 测试模型命令
测试图片:
	python detect.py --source ./testfiles/img1.jpg --weights runs/train/base/weights/best.pt --conf 0.4 
	
测试视频:
	不显示实时效果,仅在runs中创建结果视频:
		python detect.py --source ./testfiles/kouzhao1.mp4 --weights runs/train/base/weights/best.pt --conf 0.4
	显示实时效果,并在runs中创建结果视频:
		python detect.py --source ./testfiles/kouzhao1.mp4 --weights runs/train/base/weights/best.pt --conf 0.4 --view-img

笔者

笔者 - jxd

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

信必诺

嗨,支持下哥们呗。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值