宣传一下相关文章(下面是效果):Python —— Windows10下配置Pytorch环境、进行训练模型并测试(完整流程,附有视频)
相关文章
Python —— Windows10下配置Pytorch环境、进行训练模型并测试(完整流程,附有视频)
Python —— Win10将Yolov5的.pt模型导出为.onnx模型
OpenCv —— Win10使用OpenCv调用Yolov5的.pt导出的.onnx模型进行测试【CPU版Cv】(附源码)
正文 - 数据集训练命令
基线训练命令:
python train.py --data data/voc-mask.yaml --cfg models/yolov5s-mask.yaml --weights weights/yolov5s.pt --batch-size 16 --epochs 50 --workers 4 --name base
使用Adam优化器训练命令:
python train.py --data data/voc-mask.yaml --cfg models/yolov5s-mask.yaml --weights weights/yolov5s.pt --batch-size 16 --epochs 50 --workers 4 --adam --name base+adam
使用image-weights训练命令:
python train.py --data data/voc-mask.yaml --cfg models/yolov5s-mask.yaml --weights weights/yolov5s.pt --batch-size 16 --epochs 50 --image-weights --workers 4 --name base+imgweights
使用label-smoothing训练命令:
python train.py --data data/voc-mask.yaml --cfg models/yolov5s-mask.yaml --weights weights/yolov5s.pt --batch-size 16 --epochs 50 --workers 4 --label-smoothing 0.1 --name base+labelsmoothing
使用YOLOv5 P6训练命令:
新建文件models/yolov5s6-mask.yaml, 然后修改配置参数
# parameters
nc: 2 # number of classes
执行命令:
python train.py --data data/voc-mask.yaml --cfg models/yolov5s6-mask.yaml --weights weights/yolov5s6.pt --batch-size 4 --epochs 50 --workers 4 --img-size 1280 --name base+P6
训练过程tensorboard可视化:
tensorboard --logdir=./runs
正文 - 测试模型命令
测试图片:
python detect.py --source ./testfiles/img1.jpg --weights runs/train/base/weights/best.pt --conf 0.4
测试视频:
不显示实时效果,仅在runs中创建结果视频:
python detect.py --source ./testfiles/kouzhao1.mp4 --weights runs/train/base/weights/best.pt --conf 0.4
显示实时效果,并在runs中创建结果视频:
python detect.py --source ./testfiles/kouzhao1.mp4 --weights runs/train/base/weights/best.pt --conf 0.4 --view-img
笔者
笔者 - jxd