武大《GIL: a tightly coupled GNSS PPP/INS/LiDAR method for precise vehicle navigation》

GIL:一种紧密耦合的GNSS PPP/INS/激光雷达方法,用于精确的车辆导航

Abstract 

        精确定位和导航在自动驾驶和精准农业等汽车相关应用中发挥着至关重要的作用。随着全球导航卫星系统(GNSS)的快速发展,精确点定位(PPP)技术作为一种全球定位解决方案,因其操作方便而得到了广泛的应用。然而,PPP的性能受到信号干扰的严重影响,特别是在受GNSS挑战的环境中。惯性导航系统(INS)辅助GNSS可以显著提高恶劣环境下导航的连续性和准确性,但在GNSS中断时不会退化。激光雷达(激光成像、探测和测距)-惯性测光仪(LIO)在局部导航中表现良好,可以抑制惯性测量单元(IMU)的发散。

        然而,在远程导航中,如果没有外部辅助应用,误差积累是不可避免的。为了提高车辆导航性能,我们提出了一种紧密耦合的GNSS PPP/INS/LiDAR(GIL)融合方法,该方法紧密融合了多GNSS PPP、微机电系统(MEMS)-IMU和激光雷达的原始测量值,以在城市环境中实现高精度和可靠的导航。本文进行了多次实验,对该方法进行了评价。结果表明,与多-GNSS PPP/INS紧密耦合解相比,该方法的定位均方根误差(RMSEs)在东、北、垂直分量上分别提高了63.0%、51.3%和62.2%。GIL方法可以在GNSS部分封闭的环境(即GNSS信号部分封闭的环境)中实现十米级定位精度,在GNSS隐蔽的环境(即GNSS很少使用的环境)中实现米级定位精度。此外,采用吉尔方法还可以提高速度和姿态估计的精度。

Introduction

         准确连续导航是可靠智能驾驶系统的基本前提之一。然而,在复杂的场景中,一个独立的传感器要满足健壮导航的需求,通常是不同的(Groves等人,2014;Li等人,2021)。多传感器数据融合技术充分利用了不同的传感器(如全球导航卫星系统(GNSS)、惯性导航系统(INS)、激光成像、检测和测距(LiDAR)、照相机),已成为学术和工业领域的热点。

        GNSS能够提供准确的定位、导航和定时(PNT)服务,被广泛应用于各种领域。与实时运动学(RTK)等动态差分定位技术相比,Zumberge等人(1997)提出的精确点定位(PPP)方法可以克服距离的限制,具有操作方便的优势。卫星轨道和时钟产品的开发(Kouba,2013)进一步提高了PPP的实用性(Tang等人,2017;Wright等人,2012)。随着GNSS的快速发展,伽利略导航卫星系统(伽利略)和北斗卫星导航系统(BDS)等附加系统可以提高PPP观测的几何强度。随着更多的GNSS卫星可用,GPS(全球定位系统)+BDS+伽利略PPP比仅使用GPS的PPP解决方案具有收敛速度更快和更高的精度(Guo等人,2018;Li等人,2018)。

        尽管具有其优点,但multi-GNSS PPP在卫星能见度差或星座几何形状弱的情况下无法免疫于退化(Zhang & Li,2012),从而使城市地区的连续和精确导航成为一个棘手的问题。为了解决这个问题,我们已经做了大量的工作来帮助GNSS与INS合作(Cui等人,2019年;Gao等人,2017年)。对于PPP,Roesler(2009)和Shin(2009)证明了PPP/INS融合在开放天空和GNSS隐蔽环境(即很少使用GNSS的环境)中都可以实现优越的定位精度和连续性。与松散耦合方法相比,当卫星可用性有限时,紧密耦合集成已被证明更有效和稳健(Abd Rabbou & El-Rabbany,2015a,2015b)。然而,当GNSS信号被阻塞时,由于误差的积累,导航结果迅速下降,特别是对于微机电系统(MEMS)惯性测量单元(IMUs)(Abd Rabbou & El-Rabbany,2015a)。

        幸运的是,激光雷达和IMU的融合在局部导航中显示出良好的精度和可靠性,为车辆导航提供了另一种解决方案。典型的方法,如激光光学测和测绘(LOAM)(Zhang & Singh,2014)、ϗep(Hess等人,2016)和激光雷达-imu光学测(LIO-mapping)(Ye等人,2019),可以实现室内导航任务的分米级定位精度。这种方法通常提出一个优化问题来确定激光雷达位姿的最佳估计。此外,也有大量的研究试图通过基于滤波的实践来实现融合。例如,Zhen等人(2017)提出了一种基于高斯粒子滤波器器的紧密耦合INS/LiDAR方法,并验证了其在各种具有挑战性的条件下的有效性,如被绑架的机器人。Qin等人(2020)利用迭代误差状态卡尔曼滤波器实现实时自我运动估计。

        为了同时利用局部和全局导航,实现全球无漂移定位,许多学者对GNSS、INS和LiDAR的集成进行了深入的研究。一种融合的模式是利用GNSS/INS结果来估计重力的方向预测激光雷达的姿态(Hess等人,2016)。然而,该方案没有考虑GPS和IMU的数据处理,并严重依赖于激光雷达的配准。另外,通过扩展传统的GNSS/INS方案(SLAM),作者(Chiang等人,2020年)提出了一种用于移动车辆的车道级导航方法。其他集成策略有助于使用可选的GPS位置约束的紧密耦合激光雷达/IMU里程计(Shan等人,2020年;Koide,2019年)。这些策略将GNSS作为一个“黑盒”,在描述一个自定义的局部坐标系中的姿态,并将局部里程计结果与GPS定位结果松散地合并。Soloviev(2008)引入了GPS、二维(2D)激光器和INS的紧密耦合解决方案,以提高城市地区的二维平面定位性能。然而,该研究仅使用了GPS衍生的水平位置。

        在这篇文章中,我们提出了一种紧密耦合的多GNSS PPP/INS/LiDAR(GIL)算法,以在城市环境中进行三维(3D)大规模车辆导航。通过扩展卡尔曼PPP(EKF)和16线激光雷达进行原始观测,以提高位置、速度和姿态方面的导航性能。设计在武汉大学周围的GNSS挑战性环境中进行实验来评估这种方法。

Mathematical model

 Te状态向量δx由INS、PPP和LiDAR的误差状态组成,分别由δxins、δxppp和δxlidar表示。特殊形式可转换为:

略。。。

系统框架为:

 

 预测模型和GNSS观测模型都和上一篇文章相同。不同之处在基于雷达的观测模型。

LiDAR measurement model

        在介绍激光雷达测量之前,我们预先描述了滑动窗口机制。如图1所示,存储在状态向量中的激光雷达帧的阈值N被预先设置,当窗口满时,最老的帧将被丢弃。新获得的激光雷达帧将与滑动窗口中的其他激光雷达扫描进行匹配,以建立帧之间的几何关系。我们注意到N值不应该设置得太大。一个小的窗口有利于计算效率,但扫描匹配往往不准确,帧之间的距离较大,特别是当车辆在道路上快速移动时。 考虑到配准中存在一些不可靠的观察结果,采用卡方检验(Sun等人,2018年;Zuo等人,2019年)是用于从扫描匹配中去除异常值,只有通过测试的测量值将用于EKF测量更新。

        当一个新的激光雷达帧到达时,将进行特征提取,以选择扫描中近似位于边缘或平面上的高质量点(Zhang & Singh,2014)。对10个边缘或平面特征进行去偏校正(Ye et al.,2019),并投影到旧的激光雷达帧上,以确定最近的线或平面对应关系。空间八叉树(De Berg et al.,2008)在这一过程中构建了快速索引。有关匹配点线对和点平面对的更多细节,请参考(Zhang et al.,2017)。在边缘匹配的情况下,假设lk边缘a是最新的激光雷达帧k + 1的边特征,其在第k帧的投影帧为b,相应的线发现的帧k可以由两个点p边缘,lk和pb边缘,lk,因此点对点距离表示为:

 在点和平面匹配方面,平面、lk i表示平面特征p平面的投影,在帧k中选择从帧k + 1到帧k,选择三点平面、平面、lk b、平面、lk c形成相应的匹配平面。点对平面距离d平面i表示为:

 LiDAR观测方程可以用公式(14)和(15)中的距离来表示:

 r表示观测的残差,n表示测量噪声。H为设计的矩阵

可以通过式14和式15计算 

通过IMU推演,以及IMU(b系)和雷达(l系)之间的外参,可以知道

在中,边缘或平面测量的非零元素

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值