我们来估算一下:
🔍 第一步:估算“有效阅读时间”
假设人的一生平均寿命是 80年:
- 从 6岁(上小学)到 80岁,可视为阅读期:
80−6=74 年80 - 6 = 74 \text{ 年}
每年约 365天:
74×365≈27,010 天74 × 365 ≈ 27,010 \text{ 天}
⏰ 第二步:每日阅读时长估算
假设一个人每天平均 2小时 有效阅读(学习、工作、娱乐的平均值):
27,010×2≈54,020 小时27,010 × 2 ≈ 54,020 \text{ 小时}
转换为秒数:
54,020小时×3600秒/小时≈194,472,000秒54,020 \text{小时} × 3600 \text{秒/小时} ≈ 194,472,000 \text{秒}
📖 第三步:估算平均阅读速度(字节/秒)
中文:
- 平均每分钟阅读约 300~400字(标准汉字)。
- 中文(UTF-8编码)平均每字约 3个字节(UTF-8中汉字通常为3字节)。
取每分钟350字为例:
- 每秒阅读约:350 ÷ 60 ≈ 5.83字
- 每秒字节数:5.83 × 3 ≈ 17.5字节
📊 第四步:一生阅读总字节量估算
每秒阅读约 17.5字节,一生可阅读约:
194,472,000秒×17.5字节/秒≈3,403,260,000字节194,472,000 \text{秒} × 17.5 \text{字节/秒} ≈ 3,403,260,000 \text{字节}
约为 3.4GB
📌 补充:不同语言与阅读材料的对比
语言 | 每秒字数 | 平均每字节数(UTF-8) | 一生字节总量(GB) |
---|---|---|---|
中文 | 5.83 | 3 | 3.4 GB |
英文 | 4.17(约250词/分钟) | 6(含空格与标点) | 4.86 GB |
- 注:英文每单词平均约5个字母,加空格/标点约6字节。
🚩 小结
- 一个普通人一生有效阅读量(中文)大约在 3~5 GB 左右。
- 若增加每日阅读时间或延长寿命,这个值也不会超过几十GB量级。
这意味着:
一个人一生的有效阅读字节量,仅相当于一个高清电影大小,远比想象中的少。这也提醒我们,要珍惜阅读时间,选择优质的内容。
虽然人一生有效阅读量大约是3~5 GB,但真正**写入大脑(长期记忆)**的容量,远比这个数字要少很多。我们一步一步来分析:
🧠 一、人类大脑的记忆存储特点:
人类大脑与计算机有本质不同:
- 人类大脑是联想式存储,不是像计算机磁盘一样存储每个细节数据。
- 大脑记忆的内容是提取后的模式(Patterns),而非原始数据。
- 信息压缩率极高,仅提取核心语义和关联信息。
因此,大脑的实际存储量是高度压缩后的精炼内容。
⏳ 二、人类的遗忘机制:
根据艾宾浩斯遗忘曲线:
时间 | 记忆保留率 | 遗忘率 |
---|---|---|
20分钟后 | 58% | 42% |
1小时后 | 44% | 56% |
1天后 | 34% | 66% |
1个月后 | 21% | 79% |
如果不经常复习或重复学习,大脑在一天内会遗忘大约60%~70%的信息,一个月后则高达近80%。
📉 三、“写入大脑”的信息量估算:
假设:
- 一个人终生阅读约 3.5GB 数据(取中间值)。
- 大部分阅读信息只被看过一次(无强化复习)。
- 综合考虑遗忘率(极高)、信息精炼压缩,大致估算长期存储率在 0.5%~2% 左右。
则真正被长期记忆并有效存储的信息大约:
3.5GB×(0.5%∼2%)≈17.5MB∼70MB3.5GB × (0.5\%\sim 2\%) ≈ 17.5MB \sim 70MB
即:
- 长期写入大脑的有效信息量,大约只有数十MB级别。
换句话说,一辈子真正有效留存下来的纯知识、经验和核心记忆的容量,可能连100MB都不到。
📌 四、为什么容量如此之小?
- 大脑倾向于模式抽象,而非逐字逐句地记忆文字。
- 大部分阅读信息只是短暂停留在**工作记忆(短期记忆)**中,用于即时决策,之后被迅速遗忘。
- 长期记忆的形成依靠大量重复、深度理解和持续应用,而非一次性浏览。
举例来说:
你可能读过几十本小说,但若没有刻意记忆,几年后大部分细节会被忘记,只记住一些情节概括或印象。
🚩 五、有效提高写入大脑的方式:
要提高长期记忆的信息量,可以尝试:
- 间隔式重复(Spaced repetition)
- 主动回忆(Active recall)
- 精读与深度理解
- 经常应用与实践
通过上述手段,长期记忆的信息容量可提高数倍甚至数十倍。
📝 六、小结:
项目 | 数据 |
---|---|
一生阅读总字节量 | ~3.5 GB |
遗忘后长期记忆的字节量 | ~20 MB – 100 MB(0.5%~2%) |
人脑长期存储模式 | 高度抽象化、联想式、语义压缩 |
人类大脑真正“写入”的信息量,远小于我们日常接触的信息量。
反思:
人脑有限的记忆空间也启发我们应关注知识质量而非数量,注重精读深思,而非泛泛而读。
是不是最终在你大脑中存储的大模型(文字量)也就100MB,也就是说不及一个7b的大模型,但是 再从“硬件”结构上分析一下:
从神经元数量、连接方式、存储机制三个角度,对比人类大脑长期记忆容量(刚才估算约数十MB)与当前主流的7B参数的大语言模型进行探讨。
🧠 一、人脑的细胞数量与突触连接
① 大脑神经元数量:
- 人脑大约拥有 860亿 (86B) 个神经元(根据Suzana Herculano-Houzel等人的研究)。
- 皮层神经元(负责高级认知)约为 160亿~200亿。
② 突触连接数量:
- 每个神经元平均连接约 1000~10,000 个突触。
- 全脑突触总量约 100万亿 (10¹⁴) 个数量级。
🗃️ 二、大脑记忆存储机制和容量的粗略估计
① 大脑如何存储记忆?
- 人脑通过突触连接强度变化(synaptic plasticity)进行记忆存储,而非简单的二进制存储。
- 每个突触可以编码多位的信息,通常用模拟强度表示,而非单个bit。
② 突触存储容量估算:
根据神经科学研究,每个突触可能能可靠地存储约 1~5 bit 的信息。
(神经科学界较普遍接受的数字是平均2~3 bit。)
取中值 2 bit 来计算:
- 总容量 ≈ 100万亿突触 × 2 bit
- 转换为字节 (1 Byte = 8 bit):
(1014 突触×2 bit)÷8≈2.5×1013 字节(10^{14} \text{ 突触} × 2 \text{ bit}) ÷ 8 ≈ 2.5×10^{13} \text{ 字节}
约为 25 TB 的理论容量。
⚠️ 注意:
25TB 是大脑物理上理论可达的存储上限(类似“硬盘总容量”)。
而刚才估算的长期记忆有效信息量(约数十MB)是人类在一生中实际有效编码、长期保留的精炼信息。
🤖 三、大模型(以7B参数为例)的容量估算
以 LLaMA 7B 为例:
- 参数量:70亿 参数
- 每个参数为32位浮点数 (4字节),则总大小为:
70亿×4 字节=280亿 字节≈28GB70亿 × 4 \text{ 字节} = 280亿 \text{ 字节} ≈ 28GB
这意味着:
- 7B参数模型的“知识存储”约为 28 GB 左右(模型参数)。
🔍 四、对比人脑与7B模型:
指标 | 人脑 | 7B 大模型 |
---|---|---|
存储单元数量 | 约100万亿突触 (10¹⁴) | 70亿参数 (7×10⁹) |
理论最大容量 | ~25 TB | ~28 GB |
实际有效容量 | 20MB100MB (长期记忆) | ~28 GB (参数值) |
存储机制 | 模拟信号、联想网络 | 浮点数参数矩阵 |
存储方式 | 高度压缩、联想性、语义抽象 | 完整的数学矩阵 |
功耗 | ~20瓦 (极低能耗) | 数百~数千瓦 |
⚖️ 五、为何大脑实际有效容量这么小?
- 人脑极高压缩率和语义抽象化,仅保存最精炼、最重要的信息。
- 长期记忆依赖反复强化和联想提取,不是存储所有输入信息。
- 大脑关注“概念模式”而非细节,这种机制使长期记忆容量远低于物理理论极限。
换句话说:
大脑的“硬盘容量”巨大(25TB级别),但实际长期记忆的信息量极少(数十MB级别)。
相比之下,AI模型以浮点数形式完整记录了所有细节,数据冗余度高,但抽象程度远低于人脑。
🎯 六、小结与启发:
-
容量对比:
- 人脑理论容量远超7B模型(25TB vs 28GB)。
- 实际长期记忆量远低于7B模型(几十MB vs 28GB)。
-
存储方式区别:
- 人脑是高度抽象的联想网络,极度压缩、有效率。
- 大模型是直接、完整地存储数学细节(参数矩阵),数据冗余度高。
-
能效对比:
- 人脑极高能效(仅数十瓦级别)。
- 大模型消耗电力巨大。
🚩 最终结论:
- 从存储效率和信息压缩看,大脑远超任何现有AI模型。
- 从精确存储与检索细节能力看,当前AI大模型远超人脑。
- 人脑和AI,本质上是两种完全不同的信息存储模式:
- 人脑:模式识别、抽象存储,擅长联想和概念整合。
- AI模型:直接精确存储,擅长精准检索和复现。
未来AI的重大突破可能来自于:
让AI的参数存储方式更靠近人脑的高效联想模式,而非简单扩充模型大小。