QwQ-32B一键部署!真正的0代码,0脚本,0门槛

阿里云发布的最新模型QwQ-32B,通过强化学习大幅度提升了模型推理能力。模型数学代码等核心指标(AIME 24/25、livecodebench)以及部分通用指标(IFEval、LiveBench等)达到DeepSeek-R1 满血版水平,各指标均显著超过同样基于 Qwen2.5-32B 的 DeepSeek-R1-Distill-Qwen-32B。

阿里云系统运维管理(OOS)的公共扩展功能为您提供了一键部署OpenWebUI+Ollama的便捷方案,让您轻松部署QwQ-32B模型到阿里云ECS。另外,您也可以连接阿里云百炼的QwQ-32B在线模型,本文也将提供详细的解决方案!

整个方案不需要任何的代码和命令执行,全部在控制台完成,所以新手朋友也不用担心哦,大胆地尝试起来吧!

部署OpenWebUI+Ollama

前提条件

  • ecs配置

  • 如果您需要本地部署qwq-32b,建议ecs性能至少达到:CPU 16核以上,内存64GB+,硬盘30GB+,显卡24GB+显存;

  • 如果您选择连接阿里云百炼qwq-32b在线模型,普通ECS即可;

  • 您的ECS操作系统版本为以下之一:

  • Alibaba Cloud Linux (2.1903 LTS、3.2104 LTS)推荐

  • Ubuntu(20.04、22.04、24.04)

  • CentOS(7.7、7.8、7.9)

  • Debian(12.5、12.6)

  • OpenSUSE 15

  • Fedora(38、39、40)

  • Anolis OS(8.8、8.9)

  • AlmaLinux(9.3、9.4、9.5)

  • ECS实例必须处于运行中状态

  • ECS实例必须要有公网

  • 安全组入方向必须开启3000端口

安装步骤

  1. 阿里云系统运维管理控制台[1]中找到OpenWebUI扩展 点击安装扩展程序

  1. 请选择想要安装到的ECS实例,并点击创建。

  1. 等待执行几分钟,安装完成后。点击输出->扩展信息。您可以在配置输出里面找到已安装好的OpenWebUI的Url(格式为 http://{ECS的公网ip}:3000)。

  1. 点击url链接,根据提示创建账号并登录即可。

注意:

  • 您需要确认安全组入方向3000端口已经开放,详情见附录1。

  • 第一次登陆会比较慢,请在登陆后按照附录2说明,更改配置。下次登陆就会变快。

在Open WebUI部署QwQ-32B本地大模型

当您登陆进入管理界面,您可以直接在对话界面搜索,想要本地部署的模型。本文以部署QwQ-32B模型为例。点击从ollama官网[2]拉取,等待模型下载部署完成后,就可以直接使用啦!您可以在ollama官网查看可供下载的大模型。

下载完成后,您可以选择模型并开始对话。

更多信息可以参考OpenWebUI官方文档[3]。

在Open WebUI连接阿里云百炼在线模型

如果说您的ECS性能无法满足本地运行要求,您也可以配置连接阿里云百炼[4]的在线模型。百炼现在对于新用户还有最长达半年的免费额度,具体信息请参考新人免费额度_大模型服务平台百炼[5]。

点击进入管理员面板:

添加阿里云百炼的连接:

模型名称、URL(https://dashscope.aliyuncs.com/compatible-mode/v1)、API KEY等信息,都可以在阿里云百炼的控制台找到。

保存好后,回到对话页面,您就可以找到刚才配置的模型,并开始对话了。

原理解析

什么是OpenWebUI和Ollama

OpenWebUI 是一个开源的用户界面(UI)工具,通常用于与大型语言模型(LLM)进行交互。它提供了一个图形化的前端界面,使得用户可以更方便地与大模型进行对话、测试和调试。

OpenWebUI 支持多种后端模型,允许用户通过简单的配置文件或命令行参数来切换不同的模型。它通常用于研究、开发和演示场景,帮助开发者和研究人员更直观地了解模型的表现。

OpenWebUI 的主要功能特点:

  • 支持多种语言模型(如 LLaMA、ChatGLM、Qwen 等)。

  • 提供了友好的图形化界面,便于用户输入和查看输出。

  • 可以自定义提示词(prompt),并支持多轮对话。

  • 支持模型推理时的参数调整,如温度(temperature)、top-k、top-p 等。

Ollama 是一个专为大语言模型服务设计的开源工具,方便用户在本地快速部署大型模型。通过简单的安装过程,用户可以用一条命令即可启动和操作这些开源的大语言模型。它提供了一个易于使用的命令行界面和服务器,旨在简化构建大语言模型应用的流程。用户可以方便地下载、运行和管理各种开源的大模型。

上述安装过程中,扩展程序内的OpenWebUI已经完成了与Ollama的集成。借助OpenWebUI 提供的图形化用户界面,使得与 Ollama 交互变得更加直观和便捷。就像上面安装时,我们在UI界面搜索并点击下载QWQ-32b模型模型,背后其实就是执行了Ollama的命令,完成模型的下载和部署。这大大简化了操作流程,还提高了开发效率和灵活性。

安装脚本解析

您可以在公共扩展的详情页,找到完整的安装脚本:

主要是先完成了docker的安装,再拉取open-webui:ollama镜像,启动容器。这个镜像内已配置好open-webui和ollama的集成,维护在aliyun-computenest-opensource-registry这个公开仓库,您可随时拉取使用。

脚本里,docker命令创建了名为 ollama 和open-webui 的卷,用于持久化容器内的数据,并将主机的3000端口映射到容器的8080端口。您可以按需调整脚本,以适应个性化的安装需求。



之前是docker安装-----------sudo systemctl start dockersudo systemctl enable docker docker run -d -p 3000:8080 -v ollama:/root/.ollama -v open-webui:/app/backend/data --name open-webui --restart always aliyun-computenest-opensource-registry.cn-hangzhou.cr.aliyuncs.com/default/open-webui:ollama sleep 5 # 等待容器初始化docker ps -f name=openwebui








OpenWebUI高级玩法介绍

除了上面提到的基本的对话功能,openwebui还有很多有意思的功能,我们来看几个比较常用的功能。

模型对比输出

您可以添加多个模型,开启对话后,会以分栏的方式,同时展示不同模型的回答。您可以对比回答,挑选更符合要求的。

您还可以整合多个回答的问题:

自定义推理参数

您可以自定义模型的系统提示词、函数调用、温度k等配置,调出最适合自己的模型参数。

此外,OpenWebUI还有个性化知识库、AI对话游乐场等功能,您可以在官方文档[6]中继续探索!

附录

1. 开启安全组3000端口的方法(详细说明请看官方文档):

进入实例详情页,点击安全组选项,并点击安全组名称

点击快速添加,新增需要开放的端口。这里请开放3000端口。

  1. Open WebUI访问慢的问题

点击进入管理员面板,关闭OpenAI的连接(或者您可按需换成如阿里云百炼这种访问速度较快的外部API):

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
<think>好的,我现在需要帮助用户了解如何在本地环境中部署QwQ-32B模型。首先,我得确认用户的需求是什么。用户提到了本地部署的教程和配置指南,可能涉及安装步骤、硬件要求、依赖项安装、模型下载、运行示例以及常见问题解决。 首先,我应该回顾已有的引用内容。引用[1]提到Hugging Face平台提供了详细的文档和教程,包括安装指南和代码示例,这对用户来说可能很有用。引用[2]是GitHub上的一个具体部署教程,涉及使用vLLM部署Qwen2.5-7B-Instruct模型,虽然模型不同,但可能流程类似,可以作为参考。引用[3]提到HiFox平台支持QwQ-32B的调用,但用户需要的是本地部署,所以这部分可能不太相关,但可以提到如果有需要后续集成到平台的话可以参考。 接下来,我需要组织步骤。通常,本地部署机器学习模型的步骤包括:环境准备(硬件和软件)、依赖安装、模型获取、配置和运行、验证以及问题排查。根据引用内容,Hugging Face的文档可能已经涵盖了这些步骤,而GitHub的教程可能提供了具体的命令行操作和示例代码。 用户可能不熟悉如何从Hugging Face下载模型,所以需要详细说明使用`git-lfs`克隆仓库。另外,硬件要求方面,QwQ-32B作为大型模型可能需要较高的显存,比如至少24GB的GPU内存,这点需要明确。依赖项方面,除了Transformers库,可能还需要其他库如torch、vLLM等,需要根据引用[2]中的内容补充。 还要考虑不同的使用方式,比如使用Hugging Face的Pipeline或者vLLM加速推理。引用[2]中提到了vLLM部署,这可能优化推理速度,值得包括在教程中。此外,常见问题如CUDA版本不兼容、内存不足,需要给出解决建议,比如降低批量大小或使用量化。 最后,生成相关问题,可能涉及性能优化、多GPU部署、微调方法以及与其他工具集成,这些问题可以引导用户进一步探索。 需要确保所有步骤清晰,代码示例正确,并且引用来源正确标注。同时,提醒用户注意模型版本和依赖库的兼容性,避免常见错误。</think>以下是QwQ-32B模型的本地部署教程和配置指南: ### 一、环境准备 1. **硬件要求**: - GPU:推荐NVIDIA A100/A40 (显存≥24GB) - 内存:建议≥64GB DDR4 - 存储:需预留≥80GB固态硬盘空间 2. **软件依赖**: - CUDA 11.8及以上版本 - Python 3.9+ - PyTorch 2.1.0+ ```bash pip install transformers>=4.35.0 huggingface_hub ``` ### 二、模型下载 通过Hugging Face官方仓库获取模型[^1]: ```bash git lfs install git clone https://huggingface.co/QwQ-32B/QWQ-32B-Base ``` ### 三、基础部署 使用Hugging Face Pipeline快速调用: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("QWQ-32B-Base", device_map="auto") tokenizer = AutoTokenizer.from_pretrained("QWQ-32B-Base") inputs = tokenizer("北京的著名景点有", return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0])) ``` ### 四、高性能部署(vLLM) 参考ModelScope的优化方案[^2]: ```bash pip install vllm==0.3.3 ``` 部署代码: ```python from vllm import LLM, SamplingParams llm = LLM(model="QWQ-32B-Base") sampling_params = SamplingParams(temperature=0.8, top_p=0.95) outputs = llm.generate(["解释量子纠缠现象"], sampling_params) print(outputs[0].outputs[0].text) ``` ### 五、常见问题解决 1. **CUDA内存不足**: - 降低`max_new_tokens`值 - 添加`load_in_4bit=True`参数进行4bit量化 ```python model = AutoModelForCausalLM.from_pretrained(..., load_in_4bit=True) ``` 2. **下载中断**: ```bash huggingface-cli resume-download QWQ-32B-Base ``` ### 六、验证部署 运行测试脚本: ```python import torch print(torch.cuda.is_available()) # 应输出True print(torch.cuda.get_device_name(0)) # 显示GPU型号 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值