卡尔曼滤波应用与讲解(x未完成x)


在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!

卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf

简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

2.卡尔曼滤波器的介绍
(Introduction to the Kalman Filter)

为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。

在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。

好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。

假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为 你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的, 假设是23度,同时该值的 高斯噪声的偏差是5度( 5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从 温度计那里得到了k时刻的温度值,假设是 25度,同时该值的偏差是4度

由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。 究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance来判断。因为 Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的 实际温度值是:23+0.78*(25-23)=24.56度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。

现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个 最优值(24.56度)的偏差。算法如下 :((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。

就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(Kalman Gain)。他可以随不同的时刻而改变他自己的值,是不是很神奇!

下面就要言归正传,讨论真正工程系统上的卡尔曼。

3. 卡尔曼滤波器算法
(The Kalman Filter Algorithm)

在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随即变量(Random Variable),高斯或正态分配(Gaussian Distribution)还有State-space Model等等。但对于卡尔曼滤波器的详细证明,这里不能一一描述。

首先,我们先要引入一个离散控制过程的系统。该 系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:
X(k)=A X(k-1)+B U(k)+W(k) 
再加上系统的 测量值
Z(k)=H X(k)+V(k) 
上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。

首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:
X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)
式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。

到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。我们用P表示covariance:
P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2)
式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。

现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)
其中Kg为卡尔曼增益(Kalman Gain):
Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) ……… (4)

到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:
P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)
其中I 为1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。这样,算法就可以自回归的运算下去。

卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5 个基本公式。根据这5个公式,可以很容易的实现计算机的程序。

下面,我会用程序举一个实际运行的例子。。。

4. 简单例子
(A Simple Example)

这里我们结合第二第三节,举一个非常简单的例子来说明卡尔曼滤波器的工作过程。所举的例子是进一步描述第二节的例子,而且还会配以程序模拟结果。

根据第二节的描述,把房间看成一个系统,然后对这个系统建模。当然,我们见的模型不需要非常地精确。我们所知道的这个房间的温度是跟前一时刻的温度相同的,所以A=1。没有控制量,所以U(k)=0。因此得出:
X(k|k-1)=X(k-1|k-1) ……….. (6)
式子(2)可以改成:
P(k|k-1)=P(k-1|k-1) +Q ……… (7)

因为测量的值是温度计的,跟温度直接对应,所以H=1。式子3,4,5可以改成以下:
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1)) ……… (8)
Kg(k)= P(k|k-1) / (P(k|k-1) + R) ……… (9)
P(k|k)=(1-Kg(k))P(k|k-1) ……… (10)

现在我们模拟一组测量值作为输入。假设房间的真实温度为25度,我模拟了200个测量值,这些测量值的平均值为25度,但是加入了标准偏差为几度的高斯白噪声(在图中为蓝线)。

为了令卡尔曼滤波器开始工作,我们需要告诉卡尔曼两个零时刻的初始值,是X(0|0)和P(0|0)。他们的值不用太在意,随便给一个就可以了,因为随着卡尔曼的工作,X会逐渐的收敛。但是对于P,一般不要取0,因为这样可能会令卡尔曼完全相信你给定的X(0|0)是系统最优的,从而使算法不能收敛。我选了X(0|0)=1度,P(0|0)=10。

该系统的真实温度为25度,图中用黑线表示。图中红线是卡尔曼滤波器输出的最优化结果(该结果在算法中设置了Q=1e-6,R=1e-1)。

××××××××××××××××××

附matlab下面的kalman滤波程序:

clear
N=200;
w(1)=0;
w=randn(1,N)
x(1)=0;
a=1;
for k=2:N;
x(k)=a*x(k-1)+w(k-1);
end


V=randn(1,N);
q1=std(V);
Rvv=q1.^2;
q2=std(x);
Rxx=q2.^2; 
q3=std(w);
Rww=q3.^2;
c=0.2;
Y=c*x+V;

p(1)=0;
s(1)=0;
for t=2:N;
p1(t)=a.^2*p(t-1)+Rww;
b(t)=c*p1(t)/(c.^2*p1(t)+Rvv);
s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));
p(t)=p1(t)-c*b(t)*p1(t);
end

t=1:N;
plot(t,s,'r',t,Y,'g',t,x,'b');
另外的

#include <hidef.h>      /* common defines and macros */
#include "derivative.h"      /* derivative-specific definitions */
#include <MC9S12XS128.h>     /* derivative information */
float angle;//最优角度
float bqdd=0.02;    //估测不确定度
float dt;      //单位时间
float angle_pc=0;//最优值偏差
float cl_pc=0.0005;   //测量值偏差


void SetBusCLK_64M(void) 
{ 
     CLKSEL=0X00;                   //disengage PLL to system 
    PLLCTL_PLLON=1;                //turn on PLL 
     SYNR =0xc0 | 0x07; 
     REFDV=0x80 | 0x01; 
    POSTDIV=0x00;          //pllclock=2*osc*(1+SYNR)/(1+REFDV)=128MHz; 
    _asm(nop);             //BUS CLOCK=64M 
    _asm(nop); 
    while(!(CRGFLG_LOCK==1));           //when pll is steady ,then use it; 
     CLKSEL_PLLSEL =1;                    //engage PLL to system; 
} 
开方函数
float ssqrt(float x)

{

      float xhalf=0.5f*x;

      int i=*(int*)&x;

      i=0x5f375a86-(i>>1);

      x=*(float*)&i;

      x=x*(1.5f-xhalf*x*x);

      return(1/x);

}


void kalmanUpdate(float speed,float incAngle)//只读变量不可以修改 
{
  float GC;      //估测值
  float K;       //卡尔曼增益
  float gc_pc;   //估测值偏差的平方
  float zc;
  
  
  GC=angle+speed*dt;
  gc_pc=(angle_pc*angle_pc)+(bqdd*bqdd);
  K=gc_pc/(gc_pc+(cl_pc*cl_pc));
  K=ssqr(K);
  if(GC>incAngle) 
  {
    zc=GC;
    GC=incAngle;
    incAngle=zc;
  } 
  angle=GC+K*(incAngle-GC);
  angle_pc=((1-K)*gc_pc);
  angle_pc=ssqr(angle_pc);

}




void main(void) 
{
  /* put your own code here */
  


        EnableInterrupts;


  for(;;) 
  {
    _FEED_COP(); /* feeds the dog */
  } /* loop forever */
  /* please make sure that you never leave main */
}

另外的

float kalmanUpdate(const float gyro_m,const float incAngle)//只读变量不可以修改 
{              //         陀螺仪                角度
        float K_0;//含有卡尔曼增益的另外一个函数,用于计算最优估计值
        float K_1;//含有卡尔曼增益的函数,用于计算最优估计值的偏差
        float Y_0;
        float Y_1;
        
        float Rate;
        float Pdot[4];
        float angle_err;//角度偏量
        float E;
                
        static float angle = 0;            //下时刻最优估计值角度
        static float q_bias = 0;        //最优估计值的偏差                 
        static float P[2][2] = {{ 1, 0 }, { 0, 1 }};
                  
        Rate = gyro_m - q_bias;
                                                                  //#define dt                  0.0015//滞后 
                                                              //#define R_angle          0.69 
                                                              //#define Q_angle          0.0001 
                                                               //#define Q_gyro           0.0003 //卡尔曼滤波参数
         
        Pdot[0] = Q_angle - P[0][1] - P[1][0]; //卡尔曼增益矩阵        
        Pdot[1] = - P[1][1];                         
        Pdot[2] = - P[1][1];                                  
        Pdot[3] = Q_gyro;                         
        angle += Rate * dt; 
        P[0][0] += Pdot[0] * dt; //计算协方差矩阵
        P[0][1] += Pdot[1] * dt; 
        P[1][0] += Pdot[2] * dt; 
        P[1][1] += Pdot[3] * dt; 
  
        angle_err = incAngle - angle; 
        E = R_angle + P[0][0];
        K_0 = P[0][0] / E; 
        K_1 = P[1][0] / E; 
        Y_0 = P[0][0];   
        Y_1 = P[0][1]; 
  
        P[0][0] -= K_0 * Y_0; //跟新协方差矩阵
        P[0][1] -= K_0 * Y_1; 
        P[1][0] -= K_1 * Y_0; 
        P[1][1] -= K_1 * Y_1; 

        angle += K_0 * angle_err; //给出最优估计值
        q_bias += K_1 * angle_err;//跟新最优估计值偏差 
        return angle; 
}

另外的

/***************************************************************************/
/* kalman.c                                                                */
/* 1-D Kalman filter Algorithm, using an inclinometer and gyro             */
/* Author: Rich Chi Ooi                                                    */
/* Version: 1.0                                                            */
/* Date:30.05.2003                                                         */ 
/* Adapted from Trammel Hudson(hudson@rotomotion.com)                      */  
/* -------------------------------                                         */
/* Compilation  procedure:                                                 */
/*       Linux                                                             */
/*      gcc68 -c  XXXXXX.c (to create object file)                         */
/*      gcc68 -o  XXXXXX.hex XXXXXX.o ppwa.o                               */
/*Upload data :           */
/* ul filename.txt                       */
/***************************************************************************/
/* In this version:                                                        */
/***************************************************************************/
/* This is a free software; you can redistribute it and/or modify          */
/* it under the terms of the GNU General Public License as published       */
/* by the Free Software Foundation; either version 2 of the License,       */ 
/* or (at your option) any later version.                                  */
/*                                                                         */
/* this code is distributed in the hope that it will be useful,            */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of          */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the           */
/* GNU General Public License for more details.                            */
/*                                                                         */ 
/* You should have received a copy of the GNU General Public License       */
/* along with Autopilot; if not, write to the Free Software                */
/* Foundation, Inc., 59 Temple Place, Suite 330, Boston,                   */
/* MA  02111-1307  USA                                                     */
/***************************************************************************/
#include <math.h>
#include "eyebot.h"
/*
* The state is updated with gyro rate measurement every 20ms
* change this value if you update at a different rate.
*/
static const float dt = 0.02;
/*
* The covariance matrix.This is updated at every time step to
* determine how well the sensors are tracking the actual state.
*/
static float P[2][2] = {{ 1, 0 },
                 { 0, 1 }};
/*
* Our two states, the angle and the gyro bias.As a byproduct of computing
* the angle, we also have an unbiased angular rate available.These are
* read-only to the user of the module.
*/
float angle;
float q_bias;
float rate;

/*
* The R represents the measurement covariance noise.R=E[vvT]
* In this case,it is a 1x1 matrix that says that we expect
* 0.1 rad jitter from the inclinometer.
* for a 1x1 matrix in this case v = 0.1
*/
static const float R_angle = 0.001 ;

/*
* Q is a 2x2 matrix that represents the process covariance noise.
* In this case, it indicates how much we trust the inclinometer
* relative to the gyros.
*/
static const float Q_angle = 0.001;
static const float Q_gyro  = 0.0015;

/*
* state_update is called every dt with a biased gyro measurement
* by the user of the module.  It updates the current angle and
* rate estimate.
*
* The pitch gyro measurement should be scaled into real units, but
* does not need any bias removal.  The filter will track the bias.
*
*   A = [ 0 -1 ]
*       [ 0  0 ]
*/
void stateUpdate(const float q_m){
float q;
float Pdot[4];
/* Unbias our gyro */
q = q_m - q_bias;//当前角速度:测量值-估计值
/*
  * Compute the derivative of the covariance matrix
  * (equation 22-1)
  * Pdot = A*P + P*A' + Q 
  *
  */
Pdot[0] = Q_angle - P[0][1] - P[1][0]; /* 0,0 */
Pdot[1] = - P[1][1];          /* 0,1 */
Pdot[2] = - P[1][1];           /* 1,0 */
Pdot[3] = Q_gyro;   /* 1,1 */
/* Store our unbias gyro estimate */
rate = q;
/*
  * Update our angle estimate
  * angle += angle_dot * dt
  *       += (gyro - gyro_bias) * dt
  *       += q * dt
  */
angle += q * dt;//角速度积分累加到 估计角度
/* Update the covariance matrix */
P[0][0] += Pdot[0] * dt;
P[0][1] += Pdot[1] * dt;
P[1][0] += Pdot[2] * dt;
P[1][1] += Pdot[3] * dt;
}

/*
* kalman_update is called by a user of the module when a new
* inclinoometer measurement is available. 
*
* This does not need to be called every time step, but can be if
* the accelerometer data are available at the same rate as the
* rate gyro measurement.
*
*         H  = [ 1 0 ]
*
* because the angle measurement directly corresponds to the angle
* estimate and the angle measurement has no relation to the gyro
* bias.
*/
void kalmanUpdate(const float incAngle)
{
/* Compute our measured angle and the error in our estimate */
float angle_m = incAngle;
float angle_err = angle_m - angle;//1.12 zk-H*xk_dot
/*
  * h_0 shows how the state measurement directly relates to
  * the state estimate.
   *   
  *      H = [h_0 h_1]
  *
  * The h_1 shows that the state measurement does not relate
  * to the gyro bias estimate.  We don't actually use this, so
  * we comment it out.
  */
float h_0 = 1;
/* const float  h_1 = 0; */
/*
  * Precompute PH' as the term is used twice
  * Note that H[0,1] = h_1 is zero, so that term is not not computed
  */
const float PHt_0 = h_0*P[0][0]; /* + h_1*P[0][1] = 0*/
const float PHt_1 = h_0*P[1][0]; /* + h_1*P[1][1] = 0*/
/*
  * Compute the error estimate:
  * (equation 21-1)
  *
  * E = H P H' + R
  */ 
float E = R_angle +(h_0 * PHt_0);
/*
  * Compute the Kalman filter gains:
  * (equation 21-2)
  *
  * K = P H' inv(E)
         */
float K_0 = PHt_0 / E;
float K_1 = PHt_1 / E;
  
/*
  * Update covariance matrix:
  * (equation 21-3)
  *
  * P = P - K H P
         * Let 
  *      Y = H P
  */
float Y_0 = PHt_0;  /*h_0 * P[0][0]*/
float Y_1 = h_0 * P[0][1];
  
P[0][0] -= K_0 * Y_0;
P[0][1] -= K_0 * Y_1;
P[1][0] -= K_1 * Y_0;
P[1][1] -= K_1 * Y_1;

/*
  * Update our state estimate:
  *
  * Xnew = X + K * error
  *
  * err is a measurement of the difference in the measured state
  * and the estimate state.  In our case, it is just the difference
  * between the inclinometer measured angle and the estimated angle.
  */
angle += K_0 * angle_err;
q_bias += K_1 * angle_err;
}

另外的

%卡尔曼滤波实验程序 clc; 
y1=[3.29691969,3.38736515,7.02830641,9.71212521,11.42018315,15.97870583,22.06934285,28.30212781,30.44683831,38.75875595];  %观测值y1(k) 
y2=[2.10134294,0.47540797,3.17688898,2.49811140,2.91992424,6.17307616,5.42519274,3.05365741,5.98051141,4.51016361];        %观测值y2(k)
<span style="font-family: 宋体, Arial;">p0=[1,0;0,1];p=p0;  %均方误差阵赋初值</span>
<span style="font-family: 宋体, Arial;"> Ak=[1,1;0,1];       %转移矩阵 </span>
Qk=[1,0;0,1];       %系统噪声矩阵
 Ck=[1,0;0,1];       %量测矩阵 
Rk=[1,0;0,2];       %测量噪声矩阵 
x0=[0,0]';xk=x0;    %状态矩阵赋初值 
for k=1:10 
    Pk=Ak*p*Ak'+Qk;               %滤波方程3     
Hk=Pk*Ck'*inv(Ck*Pk*Ck'+Rk);  %滤波方程2     
yk=[y1(k);y2(k)];             %观测值 
    xk=Ak*xk+Hk*(yk-Ck*Ak*xk);    %滤波方程1     
x1(k)=xk(1); 
x2(k)=xk(2);                  %记录估计值     
p=(eye(2)-Hk*Ck)*Pk;          %滤波方程4 
    pk(:,k)=[p(1,1),p(2,2)]';     %记录状态误差协方差矩阵 
end 
figure    %画图表示状态矢量的估计值 
subplot(2,1,1) i=1:10; 
plot(i,x1(i),'k') 
h=legend('x1(k)的估计值') 
set(h,'interpreter','none') 
subplot(2,1,2) 
i=1:10; 
plot(i,x2(i),'k') 
h=legend('x2(k)的估计值') 
set(h,'interpreter','none')  
X1=[0,1.65428714,3.50300702,5.997852924,9.15040740,12.50873910,16.92192594,21.34483352,25.89335144,31.54135330,36.93605670];  %由模拟得到的实际状态值X1(k) 
X2=[0,1.65428714,1.84871988,2.47552222,3.17187816,3.35833170,4.41318684,4.42290758,4.54851792,5.64800186,5.394470340];        %由模拟得到的实际状态值X2(k) 
figure    %在同一幅图中画出状态矢量的估计值与真实值 
subplot(2,1,1) i=1:10; 
plot(i,x1(i),'k',i,X1(i+1),'b') 
h=legend('x1(k)的估计值','x1(k)的真实值') 
set(h,'interpreter','none') 
subplot(2,1,2) i=1:10;
plot(i,x2(i),'k',i,X2(i+1),'b') 
h=legend('x2(k)的估计值','x2(k)的真实值') 
set(h,'interpreter','none') 
for i=1:10   %计算x(k)的误差     
e1(i)=X1(i+1)-x1(i);     
e2(i)=X2(i+1)-x2(i); 
end 
figure       %画出误差图 
subplot(2,1,1) i=1:10; 
plot(i,e1(i),'r') 
h=legend('x1(k)的误差') 
set(h,'interpreter','none') 
subplot(2,1,2) i=1:10; 
plot(i,e2(i),'r') 
h=legend('x2(k)的误差') 
set(h,'interpreter','none')  
figure       %通过用卡尔曼滤波器的状态误差协方差矩阵画出E[ε1(k/k)^2]和E[ε2(k/k)^2] 
i=1:10; 
subplot(2,1,1) 
plot(i,pk(1,i),'r') 
 h= legend('由状态误差协方差矩阵得到的E[ε1(k/k)^2]') 
set(h,'Interpreter','none') 
subplot(2,1,2) 
plot(i,pk(2,i),'r') 
h= legend('由状态误差协方差矩阵得到的E[ε2(k/k)^2]') 
set(h,'Interpreter','none')




  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值