文心一言
在大语言模型中,思维链(Chain-of-Thought, CoT)是一种改进的提示策略,旨在提高大语言模型(LLM)在复杂推理任务中的性能。以下是对思维链CoT的详细解释:
- 定义:
- 思维链CoT是一种prompt方法,通过要求模型在输出最终答案之前,显式地输出中间逐步的推理步骤,来增强大模型的算术、常识和推理能力。
- 起源:
- 该概念最初在Google的论文《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》中被提出。
- 作用:
- CoT大幅度提高了LLM在复杂推理任务上的表现,如算术推理、常识推理和符号推理。
- 输出的中间步骤方便了使用者了解模型的思考过程,提高了大模型推理的可解释性。
- 技术细节:
- CoT与ICL(In-Context Learning)有所不同。传统的ICL方法通过x1,y1,x2,y2,...,xtest作为输入来让大模型补全输出ytest。而CoT则在prompt中除了包含任务的输入和输出外,还包含推理的中间步骤(中间思维)。
- CoT分为两种类型:基于人工示例标注的Few-shot CoT和无人工示例标注的Zero-shot CoT。
- 总结:
- 思维链CoT是一种创新的prompt技术,通过让大模型逐步参与将一个复杂问题分解为