笔记本电脑本+windows操作系统本地部署大模型及应用:Ollama + Langchain

背景:

尝试本地笔记本部署大语言模型,为今后工作中部署试点。

笔记本没有独立显卡,计划用轻量级大语言模型在CPU部署。

支持后期模型API调用(不单单是对话框UI方式),使用langchian通过API调用。

步骤:

  1. 安装运行ollama,下载模型并启用服务,提供API
  2. 安装langchain-ollama, 通过API调用lamma 3.2

Ollama 安装及大模型下载

1.1)安装ollama, 尝试过其它方式如(llama-cpp)后,感觉还是ollama方便;直接官网下载,https://ollama.com/download,目前windows也支持了

1.2)下载模型到指定路径

安装完ollama利用命令行窗口输入命令 “ollama --help”,检查一下安装。这里有两个接下来会用的命令。

  • run 直接自动下载大语言模型(如果没有下载模型), 并在命令行开始交互;
  • serve 开启断开提供服务 (API 模式),本文接下来用langchain对接 

ollama支持的模型信息,也可以在官网上查找(https://ollama.com/library):

并且官网给出了细分模型自动下载(如果没有下载)并运行的命令提示。这里以 lamma3.2为例

左边标红方框内,下拉框给出了不同版本的选项;右边标红方框内,自动给出相应的命令,复制粘贴到windows命令行中运行即可。第一次运行,下载模型需要一定时间。在下载模型前,如果不想占用C盘空间,先手动修改下载模型路径。在windows系统环境添加环境变量"OLLAMA_MODELS",变量值为指定路径。如下图。API地址也是类似修改方式,变量名OLLAMA_HOST

1.3) 模型下载并启用:

以llama3.2模型为例,通过命令"ollama run 3.2"下载(如果之前没有下载过),之后会自动运行命令行交互界面。

下载模型:

问了一个关于OpenAI的问题

即便无独立显卡的笔记本,流式反应也很快,回答质量也不错。

笔记本配置是没有独立显卡:

CPU: Intel(R) Core(TM) i5-8365U CPU @ 1.60GHz   1.90 GHz, 内存12G.运行时观察了一下performance, CPU在交互过程,瞬间飙升到100%后,稳定在70%左右。内存在8.8G(同时正常开了其它应用)。

1.4) Ollama serve 报错:

用快捷键“ctrl + D" 退出命令行模式,输入ollama serve尝试API服务。系统报错:

这时端口大概率是ollama已经在使用了, 执行allama run XX 时,同时也运行了。

把报错的端口号用网页查看(http://127.0.0.1:11434/) ,可以看到Ollama is running.

可以直接忽视报错,API调用可用;或者可以关闭ollama应用,重新打开命令交互窗口,使用ollama serve. 

发现报错没有了,在serve的模式下,会显示调用过程的细节信息。比如图中post请求处理。

2. Langchain 调用ollama中的模型

这里以jupyter-lab 工具做一个简单API示例,需要先安装langchain_ollama。

langchain官网有各种大语言模型接口介绍,openAI, ollama等。其中有接口以及Langchain使用的讲解和示例,非常详细。更加负责的逻辑可以使用langgraph来定制AI agent. 网站(https://python.langchain.com/).

国内的模型可以套壳OpenAI, 例如智普,详见官网(智谱AI开放平台),这里把api_key换为本地模型的key, 模型地址换为本地接口地址即可。

from openai import OpenAI 

client = OpenAI(
    api_key="your api key",
    base_url="https://open.bigmodel.cn/api/paas/v4/"
) 

对于电脑本地的langchain调用,ollama提供的模型服务地址为上文提到的默认地址(127.0.0.1:11434),无需密码,可以类似的配置模型如下:

from langchain_ollama import OllamaLLM

model = OllamaLLM(base_url='http://127.0.0.1:11434',model="llama3.2")
model.invoke("中国人口那么大,为什么男子足球排名不行?")

这里调用OllamaLLM类创建一个model实例,需要导入模型地址和模型名称。

invoke是langchain提供的runnable的一种调用方法,输入相关文字,大模型会对此文字回复。

API反应时间,相对与之前的命令行模式更长。成功完成API接口调用,本地试点任务完成。基于langchain的大模型应用,后期再做案例介绍。

<think>好的,我现在要帮助用户在笔记本电脑上安装和配置DeepSeek。首先,我需要回顾用户提供的引用内容,看看里面有哪些关键步骤和信息。 根据引用[1],用户提到需要下载并安装Ollama,这可能是一个部署工具。然后引用[2]和[4]提到DeepSeek的不同版本,尤其是1.5b的最小版本,适合笔记本环境。引用[3]涉及到信创系统和驱动安装,但用户可能不需要这部分,除非是特定环境。 首先,用户可能使用的是普通笔记本电脑,比如Windows或Mac,所以需要确认操作系统。然后安装Ollama,根据引用[1]的步骤。接着,下载合适的DeepSeek模型,比如1.5b版本,如引用[4]所述。然后配置Ollama来加载模型,并验证是否成功。另外,可能还需要安装Python和相关库,比如LangChain,来搭建知识库应用,如引用[2]提到的。 需要注意的步骤包括:正确下载Ollama的对应版本,避免安装错误;选择适合笔记本配置的模型版本,避免内存不足;确保Python环境正确配置;处理可能的依赖问题,比如GPU支持需要安装额外驱动,但笔记本可能没有,所以默认用CPU模式。 可能的问题:用户如何确认自己的笔记本配置适合哪个模型版本?可能需要给出建议,如1.5b适合较低配置,而更大的版本需要更多资源。另外,如何启动Ollama服务,加载模型,以及如何测试是否运行成功。还要考虑是否需要在代码中调用模型,比如Python示例,可能需要给出简单的测试代码。 此外,引用[3]提到的是麒麟系统和DCU驱动,这可能不适用于大多数用户,所以可以忽略,除非用户特别说明。因此,主要步骤集中在Ollama安装、模型下载、配置和测试,以及可能的Python集成。 总结步骤: 1. 安装Ollama 2. 下载DeepSeek模型 3. 加载模型到Ollama 4. 验证安装 5. 搭建知识库(可选,使用LangChain) 需要详细说明每个步骤的具体操作,比如Ollama的下载链接,模型下载命令,如何运行服务,以及测试的curl命令或Python代码示例。同时,提醒用户注意模型版本和硬件限制,比如CPU和内存需求。 现在需要将这些步骤整理成用户友好的指南,确保符合格式要求,如行内公式用$,独立公式用$$,正确的中文回答,并生成相关问题。</think>### 笔记本电脑安装和配置DeepSeek的步骤 #### 1. **安装Ollama框架** Ollama本地运行大模型的工具,支持跨平台部署[^1]。 - **Windows/Mac下载**:访问[Ollama官网](https://ollama.ai/)下载对应版本。 - **安装命令(Linux)**: ```bash curl -fsSL https://ollama.ai/install.sh | sh ``` #### 2. **下载DeepSeek模型** DeepSeek提供多个模型版本,根据笔记本配置选择: - **低配置(CPU/4GB内存)**:建议`deepseek-1.5b`(最小版本)[^4]。 - **高配置(GPU/16GB内存)**:可尝试`deepseek-67b`(完整版)。 ```bash ollama pull deepseek-1.5b ``` #### 3. **运行模型** 启动Ollama服务并加载模型: ```bash ollama run deepseek-1.5b ``` 输入测试问题(如“你好”),验证是否返回响应。 #### 4. **集成Python应用(知识库搭建)** 通过`LangChain`调用本地模型: ```python from langchain.llms import Ollama llm = Ollama(model="deepseek-1.5b") response = llm("什么是机器学习?") print(response) ``` #### 5. **性能优化** - **量化压缩**:使用`ollama create`将模型转换为`q4_0`格式减少内存占用。 - **批处理**:调整`ollama run`的`--num_batch`参数提升推理速度。 --- ### 关键注意事项 1. **硬件适配**: - `1.5b`版本需约2GB内存,`7b`版本需8GB以上。 - GPU加速需NVIDIA驱动+CUDA(Windows/Mac需额外配置)[^3]。 2. **模型路径**: Ollama默认模型路径为`~/.ollama/models`,确保磁盘空间充足。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值