HC-SR04超声波模块测距原理与原理图

仿真功能图
.

在这里插入图片描述

.
.
上面仿真图功能描述:
1 本实验用hcsr04作为超声波模块
2 1602液晶显示测量距离
3 可以设置限值
4 当测量的距离值少于设置值,蜂鸣器报警
5 仿真实验的程序和实物的程序可以同样使用
.
.
今天再发一个基于Proteus仿真的超声波测距。Proteus8.0之前的版本中都没有超声波测距这个模块,所以在Proteus7的软件中大部分超声波测距仿真都是采用的网友自制的超声波测距模块,自制的模块在仿真时交互性不是很友好,所以今天分享的仿真是基于Proteus8.8版本。

超声波测距模块在Proteus中的名称叫做SRF04,它的工作原理与之前文章中介绍的超声波模块工作原理一致,都是通过一个IO控制超声波模块的发射,通过另外一个IO对超声波接收端的信号进行检测,计算出超声波信号的运动时间,进而计算出模块与障碍物之间的距离。

1、HC-SR04超声波模块工作原理

(1)采用IO口触发测距,给至少10us高电平脉冲;

(2)模块自动发送八个40khz方波,并自主检测是否有电波返回;

(3)当有信号返回时,通过IO口输出一个高电平,高电平的持续时间就是超声波从发送到返回的时间;

(4)测距公式:距离=(高电平时间*声速)/2;
.
.
超声波模块的时序图
.
在这里插入图片描述

.
.
.
.

(5)工作原理分析
.
在这里插入图片描述

.
.
.
.

在这里插入图片描述
.
.
科学家们将每秒钟振动的次数称为声音的频率,单位是赫兹(Hz)。而我们人类耳朵能听到的声波频率为20Hz~20000Hz。因此,我们把频率高于20000Hz的声波称为“超声波”。超声波的方向性好,反射能力强,易于获得较集中的声能。

.
岁月哥是单片机专业,需要代画:proteus仿真图,单片机程序代写,代画AD原理图,PCB图,实物焊接的同学,请联系徵信:nianhua238
.

人们利用超声波的特性制成超声波传感器,广泛应用于汽车领域。我们所说的倒车雷达就是超声波传感器。倒车雷达在倒车时,利用超声波原理,由装置在车尾保险杠上的探头发送超声波撞击障碍物后反射此声波,计算出车体与障碍物间的实际距离,用蜂鸣器和指示灯告诉司机障碍物与汽车之间的大致距离和方向,以便驾驶员及时调整方位,解除驾驶员泊车、倒车和起动车辆时前后左右探视所引起的困扰。
.
.
超声波部分代码
.
在这里插入图片描述

.
希望同学们喜欢了!

### 使用 OpenCV 实现摄像头目标追踪 #### 选择合适的算法 对于目标追踪,有多种方法可供选择。其中一种常用的方法是 Camshift 算法,该算法基于对象的颜色直方图,在每一帧中寻找最匹配的对象区域[^3]。 另一种方式则是通过设定特定颜色范围来检测和跟踪物体。这种方法通常用于色彩对比度较高的场景下,比如红色球体在一个绿色背景上移动的情况。此过程涉及转换图像到 HSV 色彩空间,并定义阈值以隔离感兴趣的像素群组[^1]。 #### 初始化环境设备连接 为了启动项目,需先安装必要的库文件,如 `opencv-python` 和其他依赖项。接着初始化摄像机输入流,这可以通过访问本地电脑上的默认相机完成;如果是在像 Raspberry Pi 这样的嵌入式平台上工作,则可能涉及到 USB 或 CSI 接口的配置[^2]。 ```python import cv2 cap = cv2.VideoCapture(0) # 打开第一个可用摄像头 if not cap.isOpened(): print("无法打开摄像头") exit() ``` #### 设定感兴趣区域 (ROI) 当捕获到初始画面后,允许用户手动框选待追踪的目标作为 ROI。之后计算这个区域内颜色分布特征以便后续比较使用。 ```python ret, frame = cap.read() r,h,c,w = 250,90,400,125 # 单纯举例,实际应由用户交互指定 track_window = (c,r,w,h) roi = frame[r:r+h, c:c+w] hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.))) roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180]) cv2.normalize(roi_hist, roi_hist,0,255,cv2.NORM_MINMAX) term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 ) ``` #### 开始实时处理循环 进入无限循环读取新帧并对它们执行上述提到的操作——即定位并更新被标记出来的目标位置。同时显示带有标注矩形轮廓的结果视窗给观察者查看当前进度。 ```python while True: ret ,frame = cap.read() if ret == True: hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1) # 应用均值漂移算法找到新的窗口位置 ret, track_window = cv2.meanShift(dst, track_window, term_crit) # 绘制跟踪结果 x,y,w,h = track_window img2 = cv2.rectangle(frame, (x,y), (x+w,y+h), 255,2) cv2.imshow('Tracking',img2) k = cv2.waitKey(60) & 0xff if k == 27 : break else: break cv2.destroyAllWindows() cap.release() ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

岁月哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值