PCL从入门到精通阅读笔记(全局SFM 增量SFM)

https://openmvg.readthedocs.io/en/latest/software/SfM/GlobalSfM/

[GlobalACSfM] is based on the paper “Global Fusion of Relative Motions for Robust, Accurate and Scalable Structure from Motion.” published at ICCV 2013.

 

http://theia-sfm.org/sfm.html

Global SfM methods have been proven to be very fast with comparable or better accuracy to incremental SfM approaches (See [JiangICCV][MoulonICCV][WilsonECCV2014]), and they are much more readily parallelized. After we have obtained camera poses, we perform triangulation and BundleAdjustment to obtain a valid 3D reconstruction consisting of cameras and 3D points.

 

SLAM Global SfM

https://blog.csdn.net/weixin_40400177/article/details/103537633

 

c++ opencv

Ceres Solver

Boost C++

https://github.com/yagrawala/sfm-pipeline

 

全局SFM  增量SFM 的list

https://github.com/stanathong/SfM-list

 

SFM图像三维重建(一)

https://blog.csdn.net/abccc250110119/article/details/93471816

 

openMVG--GlobalSFM(原理及代码解读)

https://blog.csdn.net/weixin_41109672/article/details/107908290

 

openMVG原理、编译、源码理解、实践

https://blog.csdn.net/weixin_41109672/article/details/107426873

openMVG--IncrementalSFM(原理及代码解读)

https://blog.csdn.net/weixin_41109672/article/details/108035791

 

【public】借助openMVG、openMVS,使用自己的数据实现三维重建pipeline(SFM+MVS)

https://blog.csdn.net/weixin_41109672/article/details/107906212

 

openMVS ---dense point cloud(代码理解)

https://blog.csdn.net/weixin_41109672/article/details/108292615

 

 

<think>好的,我现在需要帮助用户找到学习PCL点云库的代码教程和相关资源。首先,用户提到了《点云库PCL入门精通》这本书,并且引用了相关的GitHub源代码链接,所以应该优先推荐这本书及其配套代码。 接下来,用户可能需要具体的代码示例,除了书上的内容,官方教程和文档也是重要的资源。我需要确认PCL的官方文档和教程链接是否仍然有效,并且是否适合入门。另外,用户可能对实践项目感兴趣,比如点云滤波、配准、分割等,这些内容在书中和官方教程中应该都有涉及。 然后,用户提到的引用3中提到了第十章关于特征描述与提取的内容,以及一个外部链接。我需要检查这个链接是否相关,并建议用户参考官方教程中的3D物体识别部分,以补充书本知识。 还要考虑用户的不同背景,比如本科生、硕士生或者工程人员,可能需要不同的学习路径。例如,初学者应该从基础开始,而有一定经验的人可能需要更高级的应用和优化方法。 最后,生成相关问题时,需要覆盖学习路径、书籍与代码的关系、实际项目应用、常见问题解决以及官方资源推荐等方面,确保用户能全面了解如何入门精通PCL库。</think>### PCL点云库学习路径及代码教程 根据引用[1][2][3],学习PCL点云库可分为以下阶段: #### 一、基础学习阶段 1. **环境搭建**: - 安装PCL 1.11+版本(建议通过vcpkg或源码编译) - 配置Visual Studio或Qt Creator开发环境 - 验证安装:运行`pcl_viewer`查看点云文件(如.pcd) 2. **核心模块入门**: ```cpp // 基础点云读取示例 #include <pcl/io/pcd_io.h> #include <pcl/point_types.h> int main() { pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); if (pcl::io::loadPCDFile<pcl::PointXYZ>("test.pcd", *cloud) == -1) { PCL_ERROR("Couldn't read file\n"); return -1; } std::cout << "Loaded " << cloud->points.size() << " points" << std::endl; return 0; } ``` #### 二、进阶学习资源 1. **推荐教材**: - 《点云库PCL入门精通》配套代码库[^2]: ```bash git clone https://github.com/LiveStockShapeAnalysis/Point-Cloud-Processing-example ``` - 包含各章节完整工程文件(滤波/分割/配准等) 2. **官方教程**: - 特征提取与3D物体识别教程[^3]: $$ \text{FeatureDescriptor} = \frac{1}{N}\sum_{i=1}^{N} \Phi(p_i, p_j) $$ 其中$\Phi$表示特征计算函数,$p_i$为查询点,$p_j$为邻域点 #### 三、实践项目建议 1. **初级项目**: - 点云滤波(直通滤波/体素滤波) - 平面分割(RANSAC算法) - ICP点云配准 2. **中级项目**: - 三维物体识别(使用ESF/VFH等特征描述子) - 点云曲面重建(泊松重建) #### 四、调试技巧 1. 使用`pcl::console::setVerbosityLevel()`提升调试输出 2. 通过CloudCompare可视化中间处理结果 3. 对NaN值进行过滤: ```cpp pcl::PassThrough<pcl::PointXYZ> pass; pass.setFilterLimits(std::numeric_limits<float>::lowest(), std::numeric_limits<float>::max()); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值