基于图像的三维重建——增量式SFM(7)


前言

目前主流的SfM(Structure from Motion,运动结构恢复)可以分为三大类型,一种是全局式的,一种是增量式的。全局式sfm是先对所有的图像计算匹配关系、进行三角化生成三维点、通过pnp估计出位姿,然后用BA(Bundle Adjustment)进行一个整体的优化。增量式sfm则是一边三角化和pnp,一边进行局部ba。
在这里插入图片描述

流程图

在这里插入图片描述

关键步骤

  1. 特征点提取与匹配:在无序图像中两两进行匹配,得到相应的匹配点;
  2. 图像连接图构建:从给定文件中读取焦距f,由相应匹配点根据对极几何求得空间中两两相机之间的转换关系R,t;
  3. 三角测量:给定相机的内外参矩阵以及对应的匹配点,通过三角测量可以求得匹配点对应的三维点坐标;
  4. 全局捆绑调整:BA问题主要是对三维点位置和相机参数进行非线性优化;
  5. 相机姿态估计(PnP):只是求解相机位姿的方法,求解出来的位姿均是相机相对世界坐标系的变换关系;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值