1深度图colorbar颜色映射--2ply点云gray颜色映射的实现

# -*- coding: utf-8 -*-
"""
Created on 2019-08-22 09:37:36
@author: fmiorell
"""

#  This script registers the "turbo" colormap to matplotlib, and the reversed version as "turbo_r"
#  Reference:  https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html
import os
from PIL import Image
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import cv2

turbo_colormap_data = np.array(
    [[0, 0, 0],
     #[0.18995, 0.07176, 0.23217],
     [0.19483, 0.08339, 0.26149],
     [0.19956, 0.09498, 0.29024],
     [0.20415, 0.10652, 0.31844],
     [0.20860, 0.11802, 0.34607],
     [0.21291, 0.12947, 0.37314],
     [0.21708, 0.14087, 0.39964],
     [0.22111, 0.15223, 0.42558],
     [0.22500, 0.16354, 0.45096],
     [0.22875, 0.17481, 0.47578],
     [0.23236, 0.18603, 0.50004],
     [0.23582, 0.19720, 0.52373],
     [0.23915, 0.20833, 0.54686],
     [0.24234, 0.21941, 0.56942],
     [0.24539, 0.23044, 0.59142],
     [0.24830, 0.24143, 0.61286],
     [0.25107, 0.25237, 0.63374],
     [0.25369, 0.26327, 0.65406],
     [0.25618, 0.27412, 0.67381],
     [0.25853, 0.28492, 0.69300],
     [0.26074, 0.29568, 0.71162],
     [0.26280, 0.30639, 0.72968],
     [0.26473, 0.31706, 0.74718],
     [0.26652, 0.32768, 0.76412],
     [0.26816, 0.33825, 0.78050],
     [0.26967, 0.34878, 0.79631],
     [0.27103, 0.35926, 0.81156],
     [0.27226, 0.36970, 0.82624],
     [0.27334, 0.38008, 0.84037],
     [0.27429, 0.39043, 0.85393],
     [0.27509, 0.40072, 0.86692],
     [0.27576, 0.41097, 0.87936],
     [0.27628, 0.42118, 0.89123],
     [0.27667, 0.43134, 0.90254],
     [0.27691, 0.44145, 0.91328],
     [0.27701, 0.45152, 0.92347],
     [0.27698, 0.46153, 0.93309],
     [0.27680, 0.47151, 0.94214],
     [0.27648, 0.48144, 0.95064],
     [0.27603, 0.49132, 0.95857],
     [0.27543, 0.50115, 0.96594],
     [0.27469, 0.51094, 0.97275],
     [0.27381, 0.52069, 0.97899],
     [0.27273, 0.53040, 0.98461],
     [0.27106, 0.54015, 0.98930],
     [0.26878, 0.54995, 0.99303],
     [0.26592, 0.55979, 0.99583],
     [0.26252, 0.56967, 0.99773],
     [0.25862, 0.57958, 0.99876],
     [0.25425, 0.58950, 0.99896],
     [0.24946, 0.59943, 0.99835],
     [0.24427, 0.60937, 0.99697],
     [0.23874, 0.61931, 0.99485],
     [0.23288, 0.62923, 0.99202],
     [0.22676, 0.63913, 0.98851],
     [0.22039, 0.64901, 0.98436],
     [0.21382, 0.65886, 0.97959],
     [0.20708, 0.66866, 0.97423],
     [0.20021, 0.67842, 0.96833],
     [0.19326, 0.68812, 0.96190],
     [0.18625, 0.69775, 0.95498],
     [0.17923, 0.70732, 0.94761],
     [0.17223, 0.71680, 0.93981],
     [0.16529, 0.72620, 0.93161],
     [0.15844, 0.73551, 0.92305],
     [0.15173, 0.74472, 0.91416],
     [0.14519, 0.75381, 0.90496],
     [0.13886, 0.76279, 0.89550],
     [0.13278, 0.77165, 0.88580],
     [0.12698, 0.78037, 0.87590],
     [0.12151, 0.78896, 0.86581],
     [0.11639, 0.79740, 0.85559],
     [0.11167, 0.80569, 0.84525],
     [0.10738, 0.81381, 0.83484],
     [0.10357, 0.82177, 0.82437],
     [0.10026, 0.82955, 0.81389],
     [0.09750, 0.83714, 0.80342],
     [0.09532, 0.84455, 0.79299],
     [0.09377, 0.85175, 0.78264],
     [0.09287, 0.85875, 0.77240],
     [0.09267, 0.86554, 0.76230],
     [0.09320, 0.87211, 0.75237],
     [0.09451, 0.87844, 0.74265],
     [0.09662, 0.88454, 0.73316],
     [0.09958, 0.89040, 0.72393],
     [0.10342, 0.89600, 0.71500],
     [0.10815, 0.90142, 0.70599],
     [0.11374, 0.90673, 0.69651],
     [0.12014, 0.91193, 0.68660],
     [0.12733, 0.91701, 0.67627],
     [0.13526, 0.92197, 0.66556],
     [0.14391, 0.92680, 0.65448],
     [0.15323, 0.93151, 0.64308],
     [0.16319, 0.93609, 0.63137],
     [0.17377, 0.94053, 0.61938],
     [0.18491, 0.94484, 0.60713],
     [0.19659, 0.94901, 0.59466],
     [0.20877, 0.95304, 0.58199],
     [0.22142, 0.95692, 0.56914],
     [0.23449, 0.96065, 0.55614],
     [0.24797, 0.96423, 0.54303],
     [0.26180, 0.96765, 0.52981],
     [0.27597, 0.97092, 0.51653],
     [0.29042, 0.97403, 0.50321],
     [0.30513, 0.97697, 0.48987],
     [0.32006, 0.97974, 0.47654],
     [0.33517, 0.98234, 0.46325],
     [0.35043, 0.98477, 0.45002],
     [0.36581, 0.98702, 0.43688],
     [0.38127, 0.98909, 0.42386],
     [0.39678, 0.99098, 0.41098],
     [0.41229, 0.99268, 0.39826],
     [0.42778, 0.99419, 0.38575],
     [0.44321, 0.99551, 0.37345],
     [0.45854, 0.99663, 0.36140],
     [0.47375, 0.99755, 0.34963],
     [0.48879, 0.99828, 0.33816],
     [0.50362, 0.99879, 0.32701],
     [0.51822, 0.99910, 0.31622],
     [0.53255, 0.99919, 0.30581],
     [0.54658, 0.99907, 0.29581],
     [0.56026, 0.99873, 0.28623],
     [0.57357, 0.99817, 0.27712],
     [0.58646, 0.99739, 0.26849],
     [0.59891, 0.99638, 0.26038],
     [0.61088, 0.99514, 0.25280],
     [0.62233, 0.99366, 0.24579],
     [0.63323, 0.99195, 0.23937],
     [0.64362, 0.98999, 0.23356],
     [0.65394, 0.98775, 0.22835],
     [0.66428, 0.98524, 0.22370],
     [0.67462, 0.98246, 0.21960],
     [0.68494, 0.97941, 0.21602],
     [0.69525, 0.97610, 0.21294],
     [0.70553, 0.97255, 0.21032],
     [0.71577, 0.96875, 0.20815],
     [0.72596, 0.96470, 0.20640],
     [0.73610, 0.96043, 0.20504],
     [0.74617, 0.95593, 0.20406],
     [0.75617, 0.95121, 0.20343],
     [0.76608, 0.94627, 0.20311],
     [0.77591, 0.94113, 0.20310],
     [0.78563, 0.93579, 0.20336],
     [0.79524, 0.93025, 0.20386],
     [0.80473, 0.92452, 0.20459],
     [0.81410, 0.91861, 0.20552],
     [0.82333, 0.91253, 0.20663],
     [0.83241, 0.90627, 0.20788],
     [0.84133, 0.89986, 0.20926],
     [0.85010, 0.89328, 0.21074],
     [0.85868, 0.88655, 0.21230],
     [0.86709, 0.87968, 0.21391],
     [0.87530, 0.87267, 0.21555],
     [0.88331, 0.86553, 0.21719],
     [0.89112, 0.85826, 0.21880],
     [0.89870, 0.85087, 0.22038],
     [0.90605, 0.84337, 0.22188],
     [0.91317, 0.83576, 0.22328],
     [0.92004, 0.82806, 0.22456],
     [0.92666, 0.82025, 0.22570],
     [0.93301, 0.81236, 0.22667],
     [0.93909, 0.80439, 0.22744],
     [0.94489, 0.79634, 0.22800],
     [0.95039, 0.78823, 0.22831],
     [0.95560, 0.78005, 0.22836],
     [0.96049, 0.77181, 0.22811],
     [0.96507, 0.76352, 0.22754],
     [0.96931, 0.75519, 0.22663],
     [0.97323, 0.74682, 0.22536],
     [0.97679, 0.73842, 0.22369],
     [0.98000, 0.73000, 0.22161],
     [0.98289, 0.72140, 0.21918],
     [0.98549, 0.71250, 0.21650],
     [0.98781, 0.70330, 0.21358],
     [0.98986, 0.69382, 0.21043],
     [0.99163, 0.68408, 0.20706],
     [0.99314, 0.67408, 0.20348],
     [0.99438, 0.66386, 0.19971],
     [0.99535, 0.65341, 0.19577],
     [0.99607, 0.64277, 0.19165],
     [0.99654, 0.63193, 0.18738],
     [0.99675, 0.62093, 0.18297],
     [0.99672, 0.60977, 0.17842],
     [0.99644, 0.59846, 0.17376],
     [0.99593, 0.58703, 0.16899],
     [0.99517, 0.57549, 0.16412],
     [0.99419, 0.56386, 0.15918],
     [0.99297, 0.55214, 0.15417],
     [0.99153, 0.54036, 0.14910],
     [0.98987, 0.52854, 0.14398],
     [0.98799, 0.51667, 0.13883],
     [0.98590, 0.50479, 0.13367],
     [0.98360, 0.49291, 0.12849],
     [0.98108, 0.48104, 0.12332],
     [0.97837, 0.46920, 0.11817],
     [0.97545, 0.45740, 0.11305],
     [0.97234, 0.44565, 0.10797],
     [0.96904, 0.43399, 0.10294],
     [0.96555, 0.42241, 0.09798],
     [0.96187, 0.41093, 0.09310],
     [0.95801, 0.39958, 0.08831],
     [0.95398, 0.38836, 0.08362],
     [0.94977, 0.37729, 0.07905],
     [0.94538, 0.36638, 0.07461],
     [0.94084, 0.35566, 0.07031],
     [0.93612, 0.34513, 0.06616],
     [0.93125, 0.33482, 0.06218],
     [0.92623, 0.32473, 0.05837],
     [0.92105, 0.31489, 0.05475],
     [0.91572, 0.30530, 0.05134],
     [0.91024, 0.29599, 0.04814],
     [0.90463, 0.28696, 0.04516],
     [0.89888, 0.27824, 0.04243],
     [0.89298, 0.26981, 0.03993],
     [0.88691, 0.26152, 0.03753],
     [0.88066, 0.25334, 0.03521],
     [0.87422, 0.24526, 0.03297],
     [0.86760, 0.23730, 0.03082],
     [0.86079, 0.22945, 0.02875],
     [0.85380, 0.22170, 0.02677],
     [0.84662, 0.21407, 0.02487],
     [0.83926, 0.20654, 0.02305],
     [0.83172, 0.19912, 0.02131],
     [0.82399, 0.19182, 0.01966],
     [0.81608, 0.18462, 0.01809],
     [0.80799, 0.17753, 0.01660],
     [0.79971, 0.17055, 0.01520],
     [0.79125, 0.16368, 0.01387],
     [0.78260, 0.15693, 0.01264],
     [0.77377, 0.15028, 0.01148],
     [0.76476, 0.14374, 0.01041],
     [0.75556, 0.13731, 0.00942],
     [0.74617, 0.13098, 0.00851],
     [0.73661, 0.12477, 0.00769],
     [0.72686, 0.11867, 0.00695],
     [0.71692, 0.11268, 0.00629],
     [0.70680, 0.10680, 0.00571],
     [0.69650, 0.10102, 0.00522],
     [0.68602, 0.09536, 0.00481],
     [0.67535, 0.08980, 0.00449],
     [0.66449, 0.08436, 0.00424],
     [0.65345, 0.07902, 0.00408],
     [0.64223, 0.07380, 0.00401],
     [0.63082, 0.06868, 0.00401],
     [0.61923, 0.06367, 0.00410],
     [0.60746, 0.05878, 0.00427],
     [0.59550, 0.05399, 0.00453],
     [0.58336, 0.04931, 0.00486],
     [0.57103, 0.04474, 0.00529],
     [0.55852, 0.04028, 0.00579],
     [0.54583, 0.03593, 0.00638],
     [0.53295, 0.03169, 0.00705],
     [0.51989, 0.02756, 0.00780],
     [0.50664, 0.02354, 0.00863],
     [0.49321, 0.01963, 0.00955],
     #[0.47960, 0.01583, 0.01055]])
     [1, 1, 1]])


def RGBToPyCmap(rgbdata):
    nsteps = rgbdata.shape[0]
    stepaxis = np.linspace(0, 1, nsteps)

    rdata = [];
    gdata = [];
    bdata = []
    for istep in range(nsteps):
        r = rgbdata[istep, 0]
        g = rgbdata[istep, 1]
        b = rgbdata[istep, 2]
        rdata.append((stepaxis[istep], r, r))
        gdata.append((stepaxis[istep], g, g))
        bdata.append((stepaxis[istep], b, b))

    mpl_data = {'red': rdata,
                'green': gdata,
                'blue': bdata}

    return mpl_data


mpl_data = RGBToPyCmap(turbo_colormap_data)
plt.register_cmap(name='turbo', data=mpl_data, lut=turbo_colormap_data.shape[0])

mpl_data_r = RGBToPyCmap(turbo_colormap_data[::-1, :])
plt.register_cmap(name='turbo_r', data=mpl_data_r, lut=turbo_colormap_data.shape[0])

def searchDirFile(rootDir, list_, end_suffix):
    for dir_or_file in os.listdir(rootDir):
        filePath = os.path.join(rootDir, dir_or_file)
        if os.path.isfile(filePath):
            if os.path.basename(filePath).endswith(end_suffix):
                list_.append(filePath)
            else:
                continue
        elif os.path.isdir(filePath):
            searchDirFile(filePath, list_, end_suffix)
        else:
            print('not file and dir '+os.path.basename(filePath))

if __name__ == '__main__':

    dataset_path = "/home/boyun/"
    end_suffix = ".tif"
    tif_list = []
    searchDirFile(dataset_path, tif_list, end_suffix)

    for ind, val in enumerate(tif_list):
        dep_filename = val.split('/')[-1].split('.')[0]
        path = val.split(dep_filename)[0]
        gray_name = val.replace("-D.tif", "-B.png")

        dep = Image.open(val)
        dep_np = np.array(dep)

        gray = Image.open(gray_name)
        gray_np = np.array(gray)

        # plt RGB
        if gray_np.ndim == 2:
            gray_np = cv2.cvtColor(gray_np, cv2.COLOR_GRAY2RGB)

        #plt.figure()
        # plt.figure("Image" + str(ind), figsize=(7, 2))
        #
        # plt.subplot(121)
        # plt.imshow(gray_np)
        #
        # plt.subplot(122)
        # #plt.imshow(dep_np, cmap='turbo_r')
        # plt.imshow(dep_np, cmap='turbo')
        # plt.colorbar()
        # plt.savefig(os.path.join(path, "{}_gray-dep_{}.png".format(dep_filename, str(ind))), dpi=600)
        # plt.close()
        # # plt.show()


        plt.figure("Image" + str(1000+ind))
        plt.imshow(dep_np, cmap='turbo')
        plt.colorbar()
        #plt.savefig(os.path.join(path, "{}_dep_{}.png".format(dep_filename, str(1000+ind))), dpi=600)
        plt.tight_layout()  # 去除pdf周围白边
        plt.savefig(os.path.join(path, "{}_dep_{}.pdf".format(dep_filename, str(1000+ind))), dpi=600)
        #plt.savefig(os.path.join(path, "{}_dep_{}.pdf".format(dep_filename, str(2000+ind))), dpi=1000)
        plt.close()
        #plt.show()

        #https://www.freesion.com/article/90411116645/
        #从小到大排列, 求取dep_np第95%分位的数值
        # vmax = np.percentile(dep_np, 95)
        # normalizer = matplotlib.colors.Normalize(vmin=dep_np.min(), vmax=vmax)
        # mapper = matplotlib.cm.ScalarMappable(norm=normalizer, cmap='magma_r')
        # colormapped_im = (mapper.to_rgba(dep_np)[:, :, :3] * 255).astype(np.uint8)
        # plt.figure("Image" + str(3000+ind))
        # plt.imshow(colormapped_im)
        # #plt.savefig(os.path.join(path, "{}_dep_{}.png".format(dep_filename, str(1000+ind))), dpi=600)
        # plt.tight_layout()  # 去除pdf周围白边
        # plt.savefig(os.path.join(path, "{}_dep_{}.pdf".format(dep_filename, str(3000+ind))), dpi=600)
        # plt.close()

 

import os
import open3d as o3d
from PIL import Image
import numpy as np
import cv2
import matplotlib.pyplot as plt

def searchDirFile(rootDir, list_, end_suffix):
    for dir_or_file in os.listdir(rootDir):
        filePath = os.path.join(rootDir, dir_or_file)
        if os.path.isfile(filePath):
            if os.path.basename(filePath).endswith(end_suffix):
                list_.append(filePath)
            else:
                continue
        elif os.path.isdir(filePath):
            searchDirFile(filePath, list_, end_suffix)
        else:
            print('not file and dir '+os.path.basename(filePath))

def depth2cloud(depth, gray, intrinsic):
    rows = len(depth)
    cols = len(depth[0])
    pointcloud = []
    colors_list = []
    for m in range(0, rows):
        for n in range(0, cols):
            d = depth[m][n]
            colors = gray[m][n]
            if d == 0:
                pass
            else:
                z = float(d) / intrinsic[2][2]
                x = (n-intrinsic[0][2]) * z / intrinsic[0][0]
                y = (m-intrinsic[1][2]) * z / intrinsic[1][1]
                points = [x, y, z]
                pointcloud.append(points)
                colors_list.append(colors)
    pointcloud_np = np.array(pointcloud, dtype=np.float32)
    color_np = np.array(colors_list) / 255
    pcd = o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector(pointcloud_np)
    pcd.colors = o3d.utility.Vector3dVector(color_np)
    return pcd

def depth2cloud_conv(depth, gray, intrinsic, filter_zero=True):
    if gray.ndim == 2:
        gray = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)
    rows = len(depth)
    cols = len(depth[0])
    # depth 1544*2064
    zs = depth / intrinsic[2][2]
    yinds = np.arange(rows).reshape(-1, 1)
    yinds = np.tile(yinds, (1, cols))
    ys = (yinds - intrinsic[1][2]) * zs / intrinsic[1][1]
    xinds = np.arange(cols).reshape(1, -1)
    xinds = np.tile(xinds, (rows, 1))
    xs = (xinds - intrinsic[0][2]) * zs / intrinsic[0][0]

    xs = np.expand_dims(xs, 2)
    ys = np.expand_dims(ys, 2)
    zs = np.expand_dims(zs, 2)
    points = np.concatenate([xs, ys, zs], axis=-1).reshape(-1, 3)
    colors = gray.reshape(-1, 3)
    if filter_zero:
        index = points[:, 2] > 0
        points_new = points[index, :].astype(np.float32)
        colors_new = colors[index, :].astype(np.float32)
        pcd = o3d.geometry.PointCloud()
        pcd.points = o3d.utility.Vector3dVector(points_new)
        pcd.colors = o3d.utility.Vector3dVector(colors_new / 255)
        return pcd



if __name__ == '__main__':

    dataset_path = "/home/boyun/"
    end_suffix = ".tif"
    tif_list = []
    searchDirFile(dataset_path, tif_list, end_suffix)

    for ind, val in enumerate(tif_list):
        dep_filename = val.split('/')[-1].split('.')[0]
        path = val.split(dep_filename)[0]
        gray_name = val.replace("-D.tif", "-B.png")

        dep = Image.open(val)
        dep_np = np.array(dep)

        gray = Image.open(gray_name)
        gray_np = np.array(gray)

        if gray_np.ndim == 2:
            gray_np = cv2.cvtColor(gray_np, cv2.COLOR_GRAY2BGR)

        if dep_filename[:3] == 'BJ1':
            K = [[2246.31, 0, 1037.54], [0, 2246.32, 809.429], [0, 0, 1]]
        elif dep_filename[:3] == 'BJ2':
            K = [[2263.52, 0, 1030.43], [0, 2263.47, 808.364], [0, 0, 1]]

        #pointcloud = depth2cloud(dep_np, gray_np, K)
        pointcloud = depth2cloud_conv(dep_np, gray_np, K)
        #o3d.visualization.draw_geometries([pointcloud])

        o3d.io.write_point_cloud(os.path.join(path, "{}_color.ply".format(dep_filename)), pointcloud)
        #o3d.io.write_point_cloud(os.path.join(path, "{}_color{}.ply".format(dep_filename, str(ind))), pointcloud)
        #o3d.visualization.draw_geometries([pointcloud])

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值