深度学习冲击下的特征检测与匹配

本文综述了深度学习在计算机视觉(CV)领域的最新进展,包括特征检测与匹配等关键技术。介绍了多个前沿模型,如TILDE、MatchNet、Discriminative Learning、LIFT等,这些模型在特征点检测、描述符学习、图像匹配等方面取得了显著成果。
摘要由CSDN通过智能技术生成

转载自博客:

深度学习在CV领域的进展以及一些由深度学习演变的新技术

https://blog.csdn.net/wzz18191171661/article/details/70161595 

特征检测与匹配(块)

经典模型:

TILDE: A Temporally Invariant Learned DEtector 
https://arxiv.org/pdf/1411.4568.pdf

MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching 
https://pdfs.semanticscholar.org/81b9/24da33b9500a2477532fd53f01df00113972.pdf

Discriminative Learning of Deep Convolutional Feature Point Descriptors 
http://cvlabwww.epfl.ch/~trulls/pdf/iccv-2015-deepdesc.pdf

Learning to Assign Orientations to Feature Points 
https://arxiv.org/pdf/1511.04273.pdf

PN-Net: Conjoined Triple Deep Network for Learning Local Image Descriptors 
https://arxiv.org/pdf/1601.05030.pdf

Multi-scale Pyramid Pooling for Deep Convolutional Representation 
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7301274

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 
https://arxiv.org/pdf/1406.4729.pdf

Learning to Compare Image Patches via Convolutional Neural Networks 
https://arxiv.org/pdf/1504.03641.pdf

PixelNet: Representation of the pixels, by the pixels, and for the pixels 
http://www.cs.cmu.edu/~aayushb/pixelNet/pixelnet.pdf

LIFT: Learned Invariant Feature Transform 
https://arxiv.org/pdf/1603.09114.pdf

TILDE: A Temporally Invariant Learned DEtector: 


MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching: 


Discriminative Learning of Deep Convolutional Feature Point Descriptors: 


Learning to Assign Orientations to Feature Points: 


PN-Net: Conjoined Triple Deep Network for Learning Local Image Descriptors: 


Multi-scale Pyramid Pooling for Deep Convolutional Representation: 


Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition: 


Learning to Compare Image Patches via Convolutional Neural Networks: 


PixelNet: Representation of the pixels, by the pixels, and for the pixels:

 

LIFT: Learned Invariant Feature Transform:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值