# 行列式计算&范德蒙德行列式(可由二，三阶数学归纳)

### 范德蒙德行列式结构

D n = ∣ 1 a 1 . . . ( a 1 ) n − 1 1 a 2 . . . ( a 2 ) n − 1 . . . . . . . . . . . . 1 a n . . . ( a n ) n − 1 ∣ D_n=\left|\begin{array}{cccc} 1& a_1&... &({a_1})^{n-1}\\ 1&{a_2}&...&({a_2})^{n-1}\\ ...&...&...&...\\ 1&{a_n}&...&({a_n})^{n-1}\\ \end{array}\right|

D n = ∣ 1 1 . . . 1 a 1 a 2 . . . ( a n ) . . . . . . . . . . . . a 1 n − 1 a 2 n − 1 . . . ( a n ) n − 1 ∣ D_n=\left|\begin{array}{cccc} 1& 1&... &1\\ {a_1}&{a_2}&...&({a_n})\\ ...&...&...&...\\ {a_1}^{n-1}&{a_2}^{n-1}&...&({a_n})^{n-1}\\ \end{array}\right|

e g : D n = ∣ a 1 n a 1 n − 1 b 1 . . . a 1 b 1 n − 1 b 1 n a 2 n a 2 n − 1 b 2 . . . a 2 b 2 n − 1 b 2 n . . . . . . . . . . . . . . . a n n a n n − 1 b n . . . a n b n n − 1 b n n a n + 1 n a n + 1 n − 1 b n + 1 . . . a n + 1 b n + 1 n − 1 b n + 1 n ∣ eg:D_n=\left|\begin{array}{cccc} a_{1}^n& a_{1}^{n-1}b_1&... &a_1b_1^{n-1}&b_1^n\\ a_{2}^n&a_{2}^{n-1}b_2&...&a_2b_2^{n-1}&b_2^n\\ ...&...&...&...&...\\ a_{n}^n&a_{n}^{n-1}b_n&...&a_nb_n^{n-1}&b_n^n\\ a_{n+1}^n&a_{n+1}^{n-1}b_{n+1}&...&a_{n+1}b_{n+1}^{n-1}&b_{n+1}^n \end{array}\right|

S o l u t i o n Solution : 将每行都提出 a i n , i = 1... n + 1 a_i^{n},i=1...n+1 倍，得：

D n = ∏ i = 1 n + 1 a i n ∣ 1 b 1 a 1 . . . ( b 1 a 1 ) n − 1 ( b 1 a 1 ) n 1 b 2 a 2 . . . ( b 2 a 2 ) n − 1 ( b 2 a 2 ) n . . . . . . . . . . . . . . . 1 b n a n . . . ( b n a n ) n − 1 ( b n a n ) n 1 b n + 1 a n + 1 . . . ( b n + 1 a n + 1 ) n − 1 ( b n + 1 a n + 1 ) n ∣ D_n=\prod_{i=1}^{n+1}a_i^n\left|\begin{array}{cccc} 1& \frac{b_1}{a_1}&... &(\frac{b_1}{a_1})^{n-1}&(\frac{b_1}{a_1})^{n}\\ 1&\frac{b_2}{a_2}&...&(\frac{b_2}{a_2})^{n-1}&(\frac{b_2}{a_2})^{n}\\ ...&...&...&...&...\\ 1&\frac{b_n}{a_n}&...&(\frac{b_n}{a_n})^{n-1}&(\frac{b_n}{a_n})^{n}\\ 1&\frac{b_{n+1}}{a_{n+1}}&...&(\frac{b_{n+1}}{a_{n+1}})^{n-1}&(\frac{b_{n+1}}{a_{n+1}})^{n} \end{array}\right|

D n = ∏ 1 ≤ i < j ≤ n + 1 ( a i b j − b i a j ) D_n=\prod_{1\le i<j\le n+1}(a_ib_j-b_ia_j)

# tips:矩阵的行列式

## 拆分的计算方法

#### 如果k阶子式A在行列式D中的行和列的标号分别为i1，i2，…，ik和j1，j2，…，jk。则要乘上

( − 1 ) ∑ i + j ( - 1 ) ^ {\sum i+j }

## 逆序数的计算方法(直接展开)：要背过二阶的计算方法

（行列式最基本的几何意义是由各个坐标轴上的有向线段所围起来的所有有向面积或有向体积的累加和。这个累加要注意每个面积或体积的方向或符号，方向相同的要加，方向相反的要减，因而，这个累加的和是代数和。）

## 另外有了行列式，就可用克莱姆法则的方式去解线性方程组。

https://www.cnblogs.com/tsingke/p/10671318.html

11-12 1238
08-31 3088
09-24 141
01-18
10-31 5377