对偶法则
命题P的一般形式为
p
1
q
1
,
p
2
q
2
,
⋯
p
n
q
n
,
使
得
q
n
+
1
(
成
立
)
\boldsymbol{p}_{1} \boldsymbol{q}_{1}, \boldsymbol{p}_{2} \boldsymbol{q}_{2}, \cdots \boldsymbol{p}_{n} \boldsymbol{q}_{n},使得\boldsymbol{q}_{n+1}(成立)
p1q1,p2q2,⋯pnqn,使得qn+1(成立)
其中
p
i
(
i
=
1
,
2
,
⋯
,
n
)
p_{i}(i=1,2, \cdots, n)
pi(i=1,2,⋯,n)为逻辑符号
∀
\forall
∀或
∃
\exists
∃,而
q
i
(
i
=
1
,
2
,
⋯
,
n
+
1
)
q_{i}(i=1,2, \cdots, n+1)
qi(i=1,2,⋯,n+1)代表普通的数学表达式,为了得到命题
P
P
P的否命题的正面叙述,只需要将命题
P
P
P中所有的逻辑符号
p
i
(
i
=
1
,
2
,
⋯
,
n
)
p_{i}(i=1,2, \cdots, n)
pi(i=1,2,⋯,n)从
∀
(
∃
)
\forall(\exists)
∀(∃)改为
∃
(
∀
)
\exists(\forall)
∃(∀),并将最后的
q
n
+
1
q_{n+1}
qn+1改为它的否定式即可。
举例:数列
{
a
n
}
\left\{a_{n}\right\}
{an}收敛于
a
a
a,按定义为
∀
ε
>
0
,
∃
N
,
∀
n
>
N
,
\forall \varepsilon>0, \exists N, \forall n>N,
∀ε>0,∃N,∀n>N,使得
∣
a
n
−
a
∣
<
ε
\left|a_{n}-a\right|<\varepsilon
∣an−a∣<ε。
它的否定,即数列
{
a
n
}
\left\{a_{n}\right\}
{an}不收敛于
a
a
a,就是
∃
ε
0
>
0
,
∀
N
,
∃
n
>
N
,
\exists \varepsilon_{0}>0, \forall N, \exists n>N,
∃ε0>0,∀N,∃n>N,使得
∣
a
n
−
a
∣
⩾
ε
0
\left|a_{n}-a\right| \geqslant \varepsilon_{0}
∣an−a∣⩾ε0