对偶法则

对偶法则

命题P的一般形式为
p 1 q 1 , p 2 q 2 , ⋯ p n q n , 使 得 q n + 1 ( 成 立 ) \boldsymbol{p}_{1} \boldsymbol{q}_{1}, \boldsymbol{p}_{2} \boldsymbol{q}_{2}, \cdots \boldsymbol{p}_{n} \boldsymbol{q}_{n},使得\boldsymbol{q}_{n+1}(成立) p1q1,p2q2,pnqn使qn+1()
其中 p i ( i = 1 , 2 , ⋯   , n ) p_{i}(i=1,2, \cdots, n) pi(i=1,2,,n)为逻辑符号 ∀ \forall ∃ \exists ,而 q i ( i = 1 , 2 , ⋯   , n + 1 ) q_{i}(i=1,2, \cdots, n+1) qi(i=1,2,,n+1)代表普通的数学表达式,为了得到命题 P P P的否命题的正面叙述,只需要将命题 P P P中所有的逻辑符号 p i ( i = 1 , 2 , ⋯   , n ) p_{i}(i=1,2, \cdots, n) pi(i=1,2,,n) ∀ ( ∃ ) \forall(\exists) ()改为 ∃ ( ∀ ) \exists(\forall) (),并将最后的 q n + 1 q_{n+1} qn+1改为它的否定式即可。

举例:数列 { a n } \left\{a_{n}\right\} {an}收敛于 a a a,按定义为
∀ ε > 0 , ∃ N , ∀ n > N , \forall \varepsilon>0, \exists N, \forall n>N, ε>0,N,n>N使得 ∣ a n − a ∣ < ε \left|a_{n}-a\right|<\varepsilon ana<ε
它的否定,即数列 { a n } \left\{a_{n}\right\} {an}不收敛于 a a a,就是
∃ ε 0 > 0 , ∀ N , ∃ n > N , \exists \varepsilon_{0}>0, \forall N, \exists n>N, ε0>0,N,n>N使得 ∣ a n − a ∣ ⩾ ε 0 \left|a_{n}-a\right| \geqslant \varepsilon_{0} anaε0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值