考研数学:达步定理

本文详细阐述了达步定理,指出若函数在闭区间上可导,导函数可以在端点导数值之间取任意值,并证明了导函数无第一类间断点的性质。同时,通过反证法解释了导函数连续性的必要性,以及其对避免特殊函数导数特例的重要意义,如Dirichlet函数和黎曼函数。
摘要由CSDN通过智能技术生成

达步定理

如果 f f f [ a , b ] [a,b] [a,b]上可导,那么:
(1) 导函数 f ′ f^{\prime} f可以取到 f ′ ( a ) f^{\prime}(a) f(a) f ′ ( b ) f^{\prime}(b) f(b)之间的一切值。
(2) f ′ f^{\prime} f无第一类间断点。
证明:先证明:如果 f ′ ( a ) f ′ ( b ) < 0 f^{\prime}(a) f^{\prime}(b)<0 f(a)f(b)<0,则必有 ξ ∈ ( a , b ) \xi \in(a, b) ξ(a,b),使得 f ′ ( ξ ) = 0 f^{\prime}(\xi)=0 f(ξ)=0,不妨设 f ′ ( a ) > 0 , f ′ ( b ) < 0 f^{\prime}(a)>0, f^{\prime}(b)<0 f(a)>0,f(b)<0,由于
f ′ ( a ) = lim ⁡ x → a + f ( x ) − f ( a ) x − a > 0 f^{\prime}(a)=\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a}>0 f(a)=xa+limxaf(x)f(a)>0
所以存在 δ 1 > 0 \delta_{1}>0 δ1>0,当 x ∈ ( a , a + δ 1 ) x \in\left(a, a+\delta_{1}\right) x(a,a+δ1)时, f ( x ) − f ( a ) x − a > 0 \frac{f(x)-f(a)}{x-a}>0 xaf(x)f(a)>0。由于 x > a x>a x>a,故有 f ( x ) > f ( a ) f(x)>f(a) f(x)>f(a),又因为
f ′ ( b ) = lim ⁡ x → b − − f ( x ) − f ( b ) x − b < 0 f^{\prime}(b)=\lim _{x \rightarrow b^{-}}-\frac{f(x)-f(b)}{x-b}<0 f(b)=xblimxbf(x)f(b)<0
所以存在 δ 2 > 0 \delta_{2}>0 δ2>0,当 x ∈ ( b − δ 2 , b ) x \in\left(b-\delta_{2}, b\right) x(bδ2,b)时, f ( x ) − f ( b ) x − b < 0 \frac{f(x)-f(b)}{x-b}<0 xbf(x)f(b)<0。由于 x < b x<b x<b,故有 f ( x ) > f ( b ) f(x)>f(b) f(x)>f(b)
这说明 f ( a ) , f ( b ) f(a),f(b) f(a),f(b)都不是 f f f [ a , b ] [a,b] [a,b]上的最大值,故必有 ξ ∈ ( a , b ) \xi \in(a, b) ξ(a,b),使得 f f f ξ \xi ξ点取得最大值。由费马定理知, f ′ ( ξ ) = 0 f^{\prime}(\xi)=0 f(ξ)=0
现在设 f ′ ( a ) < f ′ ( b ) f^{\prime}(a)<f^{\prime}(b) f(a)<f(b),任取介于 f ′ ( a ) f^{\prime}(a) f(a) f ′ ( b ) f^{\prime}(b) f(b)之间的 γ \gamma γ,即
f ′ ( a ) < γ < f ′ ( b ) f^{\prime}(a)<\gamma<f^{\prime}(b) f(a)<γ<f(b)
F ( x ) = f ( x ) − γ x F(x)=f(x)-\gamma x F(x)=f(x)γx,那么有 F ′ ( x ) = f ′ ( x ) − γ F^{\prime}(x)=f^{\prime}(x)-\gamma F(x)=f(x)γ,于是
F ′ ( a ) = f ′ ( a ) − γ < 0 , F ′ ( b ) = f ′ ( b ) − γ > 0 {F}^{\prime}({a})=f^{\prime}({a})-\gamma<0, \quad {F}^{\prime}({b})=f^{\prime}({b})-\gamma>0 F(a)=f(a)γ<0,F(b)=f(b)γ>0
从而根据上面的结论,存在 ξ ∈ ( a , b ) \xi \in(a, b) ξ(a,b),使得 F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F(ξ)=0,即
f ′ ( ξ ) = γ f^{\prime}(\xi)=\gamma f(ξ)=γ
(2)用反证法。如果 x 0 x_0 x0 f ′ f^{\prime} f的一个第一类间断点,那么 f ′ ( x 0 + ) f^{\prime}\left(x_{0}+\right) f(x0+) f ′ ( x 0 − ) f^{\prime}\left(x_{0}-\right) f(x0)都存在,由拉格朗日中值定理得:
f ′ ( x 0 ) = f + ′ ( x 0 ) = lim ⁡ x → x 0 + f ( x ) − f ( x 0 ) x − x 0 = lim ⁡ x → x 0 + f ′ ( ξ x ) ( x − x 0 ) x − x 0 = lim ⁡ x → x 0 + f ′ ( ξ x ) \begin{aligned} f^{\prime}\left(x_{0}\right) &=f_{+}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}^{+}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \\ &=\lim _{x \rightarrow x_{0}^{+}} \frac{f^{\prime}\left(\xi_{x}\right)\left(x-x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}^{+}} f^{\prime}\left(\xi_{x}\right) \end{aligned} f(x0)=f+(x0)=xx0+limxx0f(x)f(x0)=xx0+limxx0f(ξx)(xx0)=xx0+limf(ξx)
这里 x 0 < ξ x < x x_{0}<\xi_{x}<x x0<ξx<x,由于当 x → x 0 + x \rightarrow x_{0}^{+} xx0+时, ξ x → x 0 + \xi_{x} \rightarrow x_{0}^{+} ξxx0+,且已知 f ′ ( x 0 + ) f^{\prime}\left(x_{0}+\right) f(x0+)存在,所以有:
f ′ ( x 0 ) = f ′ ( x 0 + ) f^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}+\right) f(x0)=f(x0+)
同理可证 f ′ ( x 0 ) = f ′ ( x 0 − ) f^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}-\right) f(x0)=f(x0)。由此知 f ′ f^{\prime} f x 0 x_0 x0处连续,这与 x 0 x_0 x0 f ′ f^{\prime} f的间断点矛盾。
理解

  • 如果 f ′ f^{\prime} f [ a , b ] [a,b] [a,b]上的连续函数,他当然有介值性,达步定理得意义在于,即使 f ′ f^{\prime} f [ a , b ] [a,b] [a,b]上不连续,他仍然具有介质性,这一点是导函数特有的性质,从这一性质出发可以断言,不存在可导函数 f f f,使得 f ′ ( x ) = D ( x ) f^{\prime}(x)=D(x) f(x)=D(x) f ′ ( x ) = R ( x ) f^{\prime}(x)=R(x) f(x)=R(x),其中 D ( x ) D(x) D(x) R ( x ) R(x) R(x)分别为Dirichlet函数和黎曼函数。
  • 对于导函数不存在第一类间断点,完整的命题应该是导函数在可导点不可能有第一类间断点。如果这点可以不可导,那么有可能存在第一类间断点,比如 f ( x ) = ∣ x ∣ f(x)=|x| f(x)=x,它的导函数在0点处就是第一类间断点,原因是0是一个不可导点。
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值