漫步微积分二十一——不定积分和换元法

如果 y=F(x) 是导数已知的函数,例如

ddxF(x)=2x(1)
我们能够知道函数 F(x) ?不需要多想我们就能写出符合要求的函数,即 F(x)=x2 。更进一步,添加一个常数不会改变导数结果,所以下面的所有函数
x2+1,x23,x2+5π
或者更一般地
x2+c
其中 c 是常数,都会满足性质(1)。还存在其他的答案吗?答案是没有了。

这个答案的理由出自下面的原则:

如果F(x),G(x)是两个函数,并且有相同的导数 f(x) ,那么 G(x),F(x) 只相差一个常数,也就是说,存在一个常数 c ,使得

G(x)=F(x)+c
该结果对区间上的所有 x 均成立。

为了明白为什么这个命题是正确的,我们注意到在区间上G(x)F(x)的导数为零

ddx[G(x)F(x)]=ddxG(x)ddxF(x)=f(x)f(x)=0
这个差本身肯定是一个常数值 c ,所以
G(x)F(x)=corG(x)=F(x)+c
这就是我们想要建立的内容。

这个原则告诉我们等式 (1) 解的形式肯定是 x2+c

刚刚讨论的问题涉及到寻找一个函数,而该函数导数是已知的。如果 f(x) 是已知的,那么函数 F(x) 使得

ddxF(x)=f(x)(2)
叫做 f(x) 的反导,从 f(x) 寻找 F(x) 的过程是求导逆过程。我们已经看到 f(x) 的反导并非是唯一确定的,但是如果我们能够找到一个 F(x) ,那么所有其他的形式就是
F(x)+c
例如, 13x3 x2 的一个反导,那么所有 x2 反导的可能形式为
13x3+c

因为历史原因, f(x) 的反导通常叫做 f(x) 的积分,反微分叫做积分。 f(x) 积分的标准符号为

f(x)dx(3)
读作 f(x)dx 的积分。等式
f(x)dx=F(x)
完全等价于 (2) 。函数 f(x) 叫做被积函数。 (3) 中细长的 S 符号叫做积分符号,最早由莱布尼兹引入。

为了说明这一点,我们注意到公式

x2dx=13x3andx2dx=13x3+c(4)
都是正确的,但是第一个只给出了一个积分,第二个给出了所有可能的情况。正因为此,积分 (3) 经常被叫做不定积分,这是相对于定积分而言的(注:关于定积分会在后续的文章里详细介绍)。 (4) 中第二个公式里的常数 c 叫做积分常数,经常引用为任意常数。之前讨论过,为了找到函数f(x)的所有积分,首先找到一个积分比较有效,然后在末尾添加一个任意常数。

我们之前计算过得所有导数下载都可以反过来,重写成积分的形式。例如,对于幂函数

ddxxn=nxn1becomesnxn1dx=xn
更加方便的版本是
ddxxn+1n+1=xn
它的积分形式为(最好记住它)
xndx=xn+1n+1,n1(5)
总结:对幂函数积分,就是指数加1后除以新的指数。

例1:求积分:

x3dx=x44=14x4,x572dx=x573573=1573x573dxx5=x5dx=x44=14x4xdx=x1/2dx=x3/232=23x3/2

读者应该注意到,当 n=1 时, (5) 的右边分母变为零,因此没有意义。这时候

dxx
的积分是微积分中最重要的一部分,有广泛的应用。后续的文章会详细介绍。

下面附加的积分规则是个变相版本

cf(x)dx=cf(x)dx(6)
以及
[f(x)+g(x)]dx=f(x)dx+g(x)dx(7)
第一个说明常数因子可以从积分号的一边移到另一边。注意这只会适用于常数,不适用于变量
x2dxxxdx
左右两边分别是 13x3,x12x2=12x3 。公式 (7) 是说和的积分就是各项分别积分的和。对任何有限项均成立。

为了证实 (6),(7) ,注意到他们等价于微分形式

ddxcF(x)=cddxF(x)
以及
ddx[F(x)+G(x)]=ddxF(x)+ddxG(x)
其中 (d/dx)F(x)=f(x),(d/dx)G(x)=g(x)

例2:将规则 (5),(6),(7) 组合起来,我们可以积分任何多项式。例如

(3x4+6x2)dx=3x4dx+6x2dx=35x5+2x3+c
以及
(52x5+3x11)dx=5dx2x5dx+3x11dx=5x13x6+14x12+c
观察可以发现 dx=1dx=x 。每个计算中都在某位添加了一个任意常数,保证包含了所有可能的积分。

例3:我们也能积分许多非多项式的,例如幂函数的线性组合:

x23=x2/3dx=35x5/3+c
2x3x22x2dx5x1/32x1/3xdx=(2x12x2)dx=x2x+2x+c=(5x1/62x5/6)dx=66x5/612x1/6+c

公式

undu=un+1n+1,n=1(8)
(5) 只有一点区别,就是 x u替换掉了。然而,我们将 u 看做x的某个函数 f(x) u 的微分为du,这样的话
u=f(x)
以及
du=f(x)dx
(8) 就变为
[f(x)n]f(x)dx=[f(x)]n+1n+1,n1(9)
这是 (5) 更一般的泛化。

例4:实际中,我们通常显示地改变变量来使用这个想法,从而将一个复杂的积分变成如 (8) 那样简单的形式。例如

(3x21)1/34xdx
我们注意到括号内的积分为 6xdx ,与 4xdx 只相差一个常数因子,所以我们写为
uduxdx=3x2+1=6xdx=16du

这个方法叫做换元法,因为它通过替换或改变变量来简化问题。正如公式 (9) 那样,该方法之所以成功取决去存在一个积分,被积函数的一部分实质上是另一部分的导数(当然除了常数因子外)。

注解1:例4的积分是有意构造出来似的换元法有效。为了说明这一点,观察一个类似的积分

(3x21)1/3dx(10)
形式上看着比例4要简单,实际上却是更加复杂了,因为积分项缺少重要的因子 x 。如果我们尝试用之前提到的换元法,我们将得到
(3x21)1/3dx=u1/3du6x
分母中的 x 无法消掉。后面的文章我们会讲到其他方法来解决这种问题,但是目前我们无法继续做下去。

注解2:许多人试图将(10)写成

(3x21)1/3dx=(3x21)4/34/3=34(3x21)4/3+c(11)
这是不对的。为了理解为何错误,回顾一下计算积分的时候,我们总是简单的验证结果,如果我们对 f(x) 的积分有所怀疑时,通过计算它的导数看是否等于 f(x) 来进行验证。很明显 (11) 不满足,因为右边的导数是
3443(3x21)1/36x=(3x21)1/36x
确实不是 (10) 的积分项。

最后, sin,cos 函数的导数形式可以得出下面的积分形式:

cosudu=sinu+c(12)
以及
sinudu=cosu+c(13)
这些都是许多应用的有力工具,从概率论到声波的传播。

例5 (a) 求积分

cos3xdx
观察 (12) ,我们看出利用 u=3x 使得 du=3dx,dx=13du ,然后我们可以写出
cos3xdx=cosu13du=13cosudu=13sinu+c=13sin3x+c
(b) 求积分
xsin(1x2)dx
我们利用 u=1x2 使得 du=2x,xdx=12du ,然后利用 (13)
xsin(1x2)dx=sinu(12du)=12sinudu=12cosu+c=12cos(1x2)+c

注解3:从例4和例5中可以看到微分符号在用换元法计算不定积分时极其有用。这个方法对许多学生而言就像一种魔术。为了理解为何它是合法的(数学中不允许有魔术),将积分形式应用到该方法有效的积分上

f[g(x)]g(x)dx(14)
我们需要做的就是使 u=g(x) ,那么 du=g(x)dx 。现在 (14) 可以重新写成
f[g(x)]g(x)dx=f(u)du
如果我们对它进行积分,则
f(u)du=F(u)+c
或者
F(u)=f(u)
然后因为 u=g(x) (14) 可以写成
f[g(x)]g(x)dx=f(u)du=F(u)+c=F[g(x)]+c(15)
证明这个过程的一切就是观察到 (15) 是正确的答案,因为利用链式法则
ddxF[g(x)]=F[g(x)]g(x)=f[g(x)]g(x)
链式法则让我们可以利用符号 dx,du

最后,给出换元法的基本流程:

  1. 认真选择 u ,也就是u=g(x)
  2. 计算 du=g(x)dx
  3. 换元 g(x)=u,g(x)dx=du 。这时候积分必须只是关于 u 的项,不能存在x。如果不满足,那么重新选择 u
  4. 计算步骤3中的积分
  5. g(x)替换 u ,得到全部关于x的结果
  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值