05 第四章 一阶逻辑基本概念

离散数学与组合数学汇总

主要内容

  • 一阶逻辑命题符号化
    个体词、谓词、量词
    一阶逻辑命题符号化
  • 一阶逻辑公式及其解释
    一阶语言
    合式公式
    合式公式的解释
    永真式、矛盾式、可满足式

4.1 一阶逻辑命题符号化

个体词

个体词——所研究对象中可以独立存在的具体或抽象的客体
个体常项:具体的事务,用a, b, c表示
个体变项:抽象的事物,用x, y, z表示
个体域(论域)——个体变项的取值范围
有限个体域,如 {a, b, c}, {1, 2}
无限个体域,如 N, Z, R, …
全总个体域——由宇宙间一切事物组成

谓词

谓词——表示个体词性质或相互之间关系的词
谓词常项 如, F(a):a是人
谓词变项 如, F(x):x具有性质F

n(n>=1)元谓词
一元谓词(n=1)——表示性质
多元谓词(n>=2)——表示事物之间的关系
如, L(x,y):x与 y 有关系 L,L(x,y):x>=y,…
0元谓词——不含个体变项的谓词, 即命题常项或命题变项

量词

量词——表示数量的词
全称量词∀: 表示所有的.
∀x : 对个体域中所有的x

如, ∀xF(x)表示个体域中所有的x具有性质F
∀x∀yG(x,y)表示个体域中所有的x和y有关系G

存在量词∃: 表示存在, 有一个.
∃x : 个体域中有一个x

如, ∃xF(x)表示个体域中有一个x具有性质F
∃x∃yG(x,y)表示个体域中存在x和y有关系G
∀x∃yG(x,y)表示对个体域中每一个x都存在一个y使得
x和y有关系G
∃x∀yG(x,y)表示个体域中存在一个x使得对每一个y,
x和y有关系G

4.2 一阶逻辑公式及解释

定义4.1 设L是一个非逻辑符集合, 由L生成的一阶语言φ 的字母表包括下述符号:

非逻辑符号
(1) 个体常项符号:a, b, c, …, ai, bi, ci, …, i >=1
(2) 函数符号:f, g, h, …, fi, gi, hi, …, i >=1
(3) 谓词符号:F, G, H, …, Fi, Gi, Hi, …, i >=1

逻辑符号
(4) 个体变项符号:x, y, z, …, xi, yi, zi, …, i >=1
(5) 量词符号:∀, ∃
(6) 联结词符号:¬, ∧, ∨, →, ↔
(7) 括号与逗号:(, ), ,

一阶语言L的项与原子公式

定义4.2 L的的定义如下:
(1) 个体常项和个体变项是项.
(2) 若φ (x1, x2, …, xn)是任意的n元函数,t1, t2, …, tn是任意的 n个项,则φ (t1 ,t2, …, tn) 是项.
(3) 所有的项都是有限次使用(1),(2)得到的
如, a, x, x+y, f(x), g(x,y)等都是项

定义4.3 设R(x1, x2, …, xn)是L的任意n元谓词,t1, t2, …, tn 是L的任意n个项,则称R(t1, t2, …, tn)是L的原子公式.

如,F(x, y), F(f(x1, x2), g(x3, x4))等均为原子公式

一阶语言L 的公式

定义4.4 L的合式公式定义如下:
(1) 原子公式是合式公式.
(2) 若A是合式公式,则 (¬A)也是合式公式
(3) 若A, B是合式公式,则(A∧B), (A∨B), (A→B), (A↔B)也是合式公式
(4) 若A是合式公式,则∀xA, ∃xA也是合式公式
(5) 只有有限次地应用(1)—(4)形成的符号串才是合式公式.
合式公式简称公式

封闭的公式

定义4.5 在公式 ∀xA 和 ∃xA 中,称x为指导变元,A为相应量词的辖域. 在∀x和 ∃x的辖域中,x的所有出现都称为约束出现,A中不是约束出现的其他变项均称为是自由出现的.

例如,∀x(F(x,y)→G(x,z)), x为指导变元,(F(x,y)→G(x,z))为
∀x 的辖域,x的两次出现均为约束出现,y与 z 均为自由出现

定义4.6 若公式A中不含自由出现的个体变项,则称A为封闭的公式,简称闭式.

例如,∀x∀y(F(x)∧G(y)→H(x,y)) 为闭式,
而 ∃x(F(x)∧G(x,y)) 不是闭式

公式的解释

在这里插入图片描述
在这里插入图片描述

公式的类型

定理4.1 闭式在任何解释下都是命题
注意: 不是闭式的公式在解释下可能是命题, 也可能不是命题.

定义4.8 若公式A在任何解释下均为真, 则称A为永真式(逻辑
有效式)
. 若A在任何解释下均为假, 则称A为矛盾式(永假式).
若至少有一个解释使A为真, 则称A为可满足式.

代换实例

定义4.9 设A0是含命题变项 p1, p2, …, pn的命题公式,A1, A2, …, An是n个谓词公式,用Ai (1 <= i <= n) 处处代替A0中的pi,所得公式A称为A0代换实例.

例如, F(x)→G(x), ∀xF(x)→∃yG(y)等都是p→q的代换实例.

定理4.2 重言式的代换实例都是永真式,矛盾式的代换实例都是矛盾式.

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值