DDPM 论文总结 Denoising Diffusion Probabilistic Models

本文介绍了DenoisingDiffusionProbabilisticModels(DDPM)和其改进版本,这两种模型通过预测噪声和利用简化优化过程,显著提升了图像生成的质量。原始DDPM在CIFAR10和LSUN数据集上表现出色,改进的版本在保持样本质量的同时,实现了更好的对数似然。这些进展推动了深度学习生成模型的研究和实际应用.
摘要由CSDN通过智能技术生成
Denoising Diffusion Probabilistic Models (DDPM)
  • 作者: Jonathan Ho, Ajay Jain, Pieter Abbeel
  • 概述: 论文提出了一种新的生成模型——去噪扩散概率模型(Denoising Diffusion Probabilistic Models, DDPM),受非平衡热力学的启发,通过逐步引入噪声并通过学习去噪过程来合成高质量的图像。
  • 特点:
    • DDPM是一类潜变量模型,通过在数据分布和简单分布(如高斯分布)之间建立桥梁,逐步将数据转化为噪声,再逆向重建数据。
    • 论文中的模型通过对加权变分界限的训练(基于扩散概率模型和去噪得分匹配与朗之万动力学之间的新联系),获得了最佳结果。
    • 模型天然支持一种渐进式有损解压方案,可以被看作是自回归解码的泛化。

        1. 预测噪声而非像素转换

  • DDPM的第一个关键贡献是改变了生成模型的训练方式,从直接预测像素转换到预测加在图像上的噪声。这种方法简化了模型的优化过程,因为它将复杂的图像到图像的转换问题转换成了噪声预测问题。一旦噪声被准确预测,从噪声图像中恢复出干净图像就变得相对简单。
  • 这种方法与ResNet的残差结构类似,在ResNet中,网络层不是直接预测输出,而是预测与输入的残差,这样可以提高网络的学习效率和性能。DDPM通过U-Net结构的Autoencoder预测每个时间步的高斯噪声,训练目标是使得预测的噪声尽可能接近真实添加的噪声。这里的关键是,这个噪声在正向扩散过程中是已知的,并可以作为训练过程中的Ground truth。

        2. 仅预测正态分布的均值

  • DDPM的第二个贡献是发现在生成过程中,模型不需要学习整个正态分布的参数(即均值和方差),而只需要学习均值参数。在逆向过程中,高斯分布的方差可以使用一个固定的常数,这样可以进一步降低模型的优化难度,并且仍然能够达到很好的效果。
  • 通过以上两个贡献,DDPM不仅简化了生成模型的训练过程,而且还提高了模型生成高质量图像的能力。这些创新为后续的研究提供了新的方向,也为生成模型的实际应用奠定了基础。
  • 成果:
    • 在无条件CIFAR10数据集上,模型取得了Inception得分9.46和当时最先进的FID得分3.17。
    • 在256x256像素的LSUN数据集上,样本质量与ProgressiveGAN相似。
  • 链接arXiv:2006.11239      https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
Improved Denoising Diffusion Probabilistic Models
  • 概述: 在原始DDPM的基础上,通过一些简单的修改,改进的模型在保持高样本质量的同时,也能够获得有竞争力的对数似然。
  • 特点:
    • 改进的DDPM在样本质量和对数似然之间取得了更好的平衡。
    • 论文展示了通过简单修改可以提高DDPM性能的方法。
  • 链接arXiv:2102.09672

这些论文为深度学习领域的生成模型研究提供了新的视角和方法,尤其在高质量图像合成方面展示出了强大的能力。DDPM的研究不仅推动了生成模型的发展,也为后续的研究者提供了丰富的启发和可能的改进方向。

DDPMDenoising Diffusion Probabilistic Models)和DDIM(Denoising Diffusion Implicit Models)是两种基于扩散过程的图像去噪模型。它们的主要区别在于模型结构和学习策略。 首先,DDPM和DDIM的模型结构存在差异。DDPM是基于生成对抗网络(GAN)的模型,它将一个噪声样本通过一个潜在空间的扩散过程逐渐转换为真实样本。DDPM使用自回归模型来建模噪声样本和真实样本之间的条件分布,并通过学习逆过程来实现去噪。而DDIM是基于自编码器的模型,它将一个噪声样本通过逐步更改噪声水平来实现去噪。DDIM使用隐式神经网络来学习噪声样本和真实样本之间的条件分布,不需要生成样本或潜在空间。 其次,DDPM和DDIM的学习策略也有所不同。DDPM使用反向过程来学习,即从真实样本逐渐生成噪声样本。这种学习方式需要采样随机扰动来模拟生成噪声样本的过程。而DDIM使用前向模拟扰动过程来学习,即从噪声样本逐步还原为真实样本。这种学习方式不需要随机采样,可以更高效地生成噪声和去噪样本。 总结来说,DDPM和DDIM都是通过扩散过程实现图像去噪的模型,但它们在模型结构和学习策略上存在差异。DDPM使用生成对抗网络,学习逆过程去噪;而DDIM使用自编码器,学习前向过程去噪。这些区别使得它们在处理图像去噪问题时具有不同的优势和适用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

samoyan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值