Matplotlib调用imshow()函数绘制热图

本文详细介绍了如何使用Matplotlib的imshow()函数绘制热图,包括基本的热图绘制、不同颜色映射、颜色条调整以及随机热力图的创建。通过示例代码展示了如何设置灰度、春季、夏季、秋季和冬季颜色映射,并解释了各参数的作用。

一. Matplotlib简单回顾

Matplotlib是Python最著名的2D绘图库,该库仿造Matlab提供了一整套相似的绘图函数,用于绘图和绘表,强大的数据可视化工具和做图库,适合交互式绘图,图形美观。
首先,通过一段代码给大家回顾下Matplotlib绘图知识。
绘制2*3共6个子图,且图为空的代码如下:

[python]  view plain   copy
  1. # coding=utf-8  
  2. from matplotlib import pyplot as plt  
  3.   
  4. fig = plt.figure()  
  5. ax1 = fig.add_subplot(231)  
  6. ax2 = fig.add_subplot(232)  
  7. ax3 = fig.add_subplot(233)  
  8. ax4 = fig.add_subplot(234)   
  9. ax5 = fig.add_subplot(235)  
  10. ax6 = fig.add_subplot(236)  
  11. plt.grid(True)  
  12. plt.show()  
运行结果如下图所示:



然后需要调用函数绘图,下面提几个重点知识:
    1.plot(x, y, marker='D')表示绘制折线图,marker设置样式菱形。
    2.scatter(x, y, marker='s', color='r')绘制散点图,红色正方形。
    3.bar(x, y, 0.5, color='c')绘制柱状图,间距为0.5,原色。
    4.hist(data,40,normed=1,histtype='bar',
                   facecolor='yellowgreen',alpha=0.75)直方图。
    5.设置x轴和y轴的坐标值:
      xlim(-2.5, 2.5) #设置x轴范围 ylim(-1, 1) #设置y轴范围
    6.显示中文和负号代码如下:
      plt.rcParams['font.sas-serig']=['SimHei'] #用来正常显示中文标签
      plt.rcParams['axes.unicode_minus']=False #用来正常显示负号

完整代码如下:

# -*- coding: utf-8 -*-
# @Time    : 2018/3/17 16:18
# @Author  : Barry
# @Email   : s.barry1994@foxmail.com
# @File    : imshow_heatmap.py
# @Software: PyCharm Community Edition


import numpy as np
from pylab import *
from matplotlib import pyplot as plt

x = [1, 2, 3, 4]
y = [3, 5, 10, 25]

# 创建Figure
fig = plt.figure()

# 创建一个或多个子图(subplot绘图区才能绘图)
ax1 = fig.add_subplot(231)
plt.plot(x, y, marker='D')  # 绘图及选择子图
plt.sca(ax1)

ax2 = fig.add_subplot(232)
plt.scatter(x, y, marker='s', color='r')
plt.sca(ax2)
plt.grid(True)

ax3 = fig.add_subplot(233)
plt.bar(x, y, 0.5, color='c')  # 柱状图 width=0.5间距
plt.sca(ax3)

ax4 = fig.add_subplot(234)
# 高斯分布
mean = 0  # 均值为0
sigma = 1  # 标准差为1 (反应数据集中还是分散的值)
data = mean + sigma * np.random.randn(10000)
plt.hist(data, 40, normed=1, histtype='bar', facecolor='yellowgreen', alpha=0.75)
plt.sca(ax4)

m = np.arange(-5.0, 5.0, 0.02)
n = np.sin(m)
ax5 = fig.add_subplot(235)
plt.plot(m, n)
plt.sca(ax5)

ax6 = fig.add_subplot(236)
xlim(-2.5, 2.5)  # 设置x轴范围
ylim(-1, 1)  # 设置y轴范围
plt.plot(m, n)
plt.sca(ax6)
plt.grid(True)

plt.show()

输出结果如下图所示:

Matplotlib强推博客:
http://www.cnblogs.com/zhizhan/p/5615947.html
http://blog.csdn.net/jinlong_xu/article/details/70183377



二. imshow详解热图知识

热图(heatmap)是数据分析的常用方法,通过色差、亮度来展示数据的差异、易于理解。Python在Matplotlib库中,调用imshow()函数实现热图绘制。
参考资料:http://matplotlib.org/users/image_tutorial.html
源码介绍如下图所示:



imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None, resample=None, url=None, hold=None, data=None, **kwargs)

其中,X变量存储图像,可以是浮点型数组、unit8数组以及PIL图像,如果其为数组,则需满足一下形状:
    (1) M*N      此时数组必须为浮点型,其中值为该坐标的灰度;
    (2) M*N*3  RGB(浮点型或者unit8类型)
    (3) M*N*4  RGBA(浮点型或者unit8类型)

下面这段代码是一个简单的实例,代码如下:
[python]  view plain  
### 如何使用 `heatmap` 函数绘制不显示数值的 在 R 语言中,`heatmap` 和其他扩展包中的函数(如 `heatmap.2` 或者第三方库)提供了多种参数来控制的行为和外观。如果希望隐藏上的数值,则可以通过调整特定参数实现。 #### 使用基础 `heatmap` 函数 默认情况下,R 的基础 `heatmap` 函数不会直接展示单元格内的具体数值[^4]。因此,在大多数场景下无需额外操作即可满足需求: ```r data <- matrix(rnorm(100), nrow=10, ncol=10) heatmap(data, scale="none", Rowv=NA, Colv=NA) # 不会显示任何数字 ``` 上述代码通过指定 `scale="none"` 来禁用颜色缩放,并移除树状以简化输出效果。 --- #### 使用增强版 `heatmap.2` 隐藏数值 对于更高级的功能,可以考虑来自 `gplots` 库的 `heatmap.2` 函数。尽管该函数支持更多的自定义选项,但它同样允许我们轻松隐藏数值。以下是具体的实现方法: ```r library(gplots) # 创建随机数据集 expr_data <- matrix(runif(100), nrow=10, ncol=10) # 绘制无数值显示的 heatmap.2(expr_data, col=topo.colors(75), scale="none", key=TRUE, symkey=FALSE, density.info="none", trace="none", cexRow=0.5, cellnote=NULL) # 关键参数:cellnote 设置为空值即隐藏数值 ``` 在此配置中,`cellnote=NULL` 是关键所在——它确保了即使存在底层数据也不会被渲染到形上[^1]。 --- #### Python 中 Matplotlib 实现方式 如果你正在使用 Python 并希望通过 `matplotlib` 完成类似的任务,那么也可以简单地忽略文本标记部分。例如下面这段代码展示了如何仅呈现色彩而省略掉所有附加文字说明: ```python import matplotlib.pyplot as plt import numpy as np # 构建测试数据 data = [[1, 0.5, 0.7], [0.1, 0.2, 0.3]] # 显示像但不添加任何注解 plt.imshow(data, cmap='hot', interpolation='nearest') plt.colorbar() plt.xticks([]) plt.yticks([]) # 移除坐标轴刻度进一步减少干扰项 plt.show() ``` 这里的关键在于未调用诸如 `annotate()` 这样的命令去插入实际的数据值作为标签[^3]。 --- #### MATLAB 下的操作指南 最后提到MATLAB环境里边,默认生成的 Heatmap 对象也具备类似的灵活性。要达到相同目的只需避免设定 'CellLabel' 属性或者将其置空字符串向量即可: ```matlab % 假设已有矩阵 TData 存储目标资料... hFig = figure; hmObj = heatmap(TData,'ColorScaling','logarithmic'); % 创建对象实例时不传递 CellLabels 参数 title('Example Without Numbers'); xlabel('X-Axis Title'); ylabel('Y-Axis Label'); colorbar; % 添加配色条辅助理解渐变含义 set(gca,'XTickLabel',{''},'YTickLabel',{}) ; % 清理不必要的网格线描述以防混淆视线 ``` 注意以上脚本片段并未显式指派任意形似于 `{value}` 形式的字段给 hmObj.CellLabels 成员变量从而自然避开了打印过程[^2]. --- ### 总结 无论是在哪种编程环境中作,只要合理运用相应API所提供的开关机制就能有效达成隐匿原始数据点的效果。无论是R里的 `cellnote`, python下的绘逻辑还是Matlab内部的对象属性管理都体现了这一点的重要性.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一摩尔自由

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值