线性代数笔记26--正定矩阵、最小值

1. 正定矩阵

判断正定矩阵

对于二阶的来说

A = [ a b c d ] A= \begin{bmatrix} a & b \\ c & d \end{bmatrix} A=[acbd]

判定条件

  1. λ 1 > 0 , λ 2 > 0 \lambda_1 \gt 0,\lambda_2 \gt 0 λ1>0,λ2>0
  2. a > 0 , a c − b 2 > 0 a \gt0,ac-b^2 \gt0 a>0,acb2>0
  3. 主元 a > 0 , a c − b 2 a > 0 a\gt0 ,\frac{ac-b^2}{a} \gt 0 a>0,aacb2>0
  4. X ⊤ A X = 0 X^{\top}AX=0 XAX=0

前三个都是验证的条件,最后一个为实际使用的条件。

例子
[ 2 6 6 19 ] \begin{bmatrix} 2 & 6\\ 6 & 19\\ \end{bmatrix} [26619]
为正定矩阵。

[ 2 6 6 18 ] \begin{bmatrix} 2 & 6\\ 6 & 18\\ \end{bmatrix} [26618]
为半正定、奇异矩阵。
( λ = 0 , 20 ; p i v o t : 2 \lambda=0,20;pivot:2 λ=0,20;pivot:2)

X ⊤ A X = [ X 1 X 2 ] [ 2 6 6 18 ] [ x 1 x 2 ] = [ x 1   x 2 ] [ 2 x 1 + 6 x 2 6 x 1 + 18 x 2 ] = 2 x 1 2 + 12 x 1 x 2 + 18 x 2 2 X^{\top}AX=[X_1 X_2] \begin{bmatrix} 2 & 6\\ 6 & 18 \end{bmatrix} \begin{bmatrix} x_1\\x_2 \end{bmatrix}= \begin{bmatrix} x_1\ x_2 \end{bmatrix} \begin{bmatrix} 2x_1+6x_2\\6x_1+18x_2 \end{bmatrix}= 2x_1^2+12x_1x_2+18x_2^2 XAX=[X1X2][26618][x1x2]=[x1 x2][2x1+6x26x1+18x2]=2x12+12x1x2+18x22

A = L U A = [ 2 6 6 20 ] A = L U = [ 1 0 3 1 ] [ 2 6 0 2 ] A=LU\\ A= \begin{bmatrix} 2 & 6 \\6 & 20 \end{bmatrix}\\ A=LU=\begin{bmatrix} 1 & 0\\ 3 & 1\\ \end{bmatrix} \begin{bmatrix} 2 & 6\\0 & 2 \end{bmatrix} A=LUA=[26620]A=LU=[1301][2062]

刚好对应
2 ( x + 3 y ) 2 + 2 y 2 2(x+3y)^2+2y^2 2(x+3y)2+2y2

消元过程对应配方。

2. 极小值

极小值:
一阶导为0,二阶导 d 2 y d x 2 > 0 \frac{d^2y}{dx^2}\gt0 dx2d2y>0

3 × 3 3\times3 3×3的例子

A = [ 2 − 1 0 − 1 2 − 1 0 − 1 2 ] A= \begin{bmatrix} 2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 2\\ \end{bmatrix} A= 210121012

  • d e t   2 , 3 , 4 det\ 2,3,4 det 2,3,4
  • p i v o t 2 , 3 / 2 , 4 / 3 pivot 2,3/2,4/3 pivot2,3/2,4/3
  • e i g e n v a l u e   2 − 2 , 2 , 2 + 2 eigenvalue\ 2-\sqrt[]{2},2,2+\sqrt[]{2} eigenvalue 22 ,2,2+2

X ⊤ A X = 2 x 1 2 + 2 x 2 2 + 2 x 3 2 − 2 x 1 x 2 − 2 x 2 x 3 X^{\top}AX=2x_1^2+2x_2^2+2x_3^2-2x_1x_2-2x_2x_3 XAX=2x12+2x22+2x322x1x22x2x3

3. 正定矩阵判断

正定矩阵

X ⊤ A X > 0 ( e x c e p t   f o r   X = 0 ) X^{\top}AX>0(except\ for\ X=0) XAX>0(except for X=0)

A   B A\ B A B正定,则 A + B A+B A+B正定

X ⊤ A X > 0 X ⊤ B X > 0 X ⊤ A X + X ⊤ B X > 0 ( X ⊤ A + X ⊤ B ) X > 0 X ⊤ ( A + B ) X > 0 X^{\top}AX \gt 0\\ X^{\top}BX \gt 0\\ X^{\top}AX+X^{\top}BX \gt 0\\ (X^{\top}A+X^{\top}B)X \gt 0\\ X^{\top}(A+B)X \gt 0\\ XAX>0XBX>0XAX+XBX>0(XA+XB)X>0X(A+B)X>0

对于对称矩阵

A ⊤ A = ( A ⊤ A ) ⊤ = A ⊤ A ⊤ ⊤ = A ⊤ A A^{\top}A=(A^{\top}A)^{\top}=A^{\top}A^{\top^{\top}}=A^{\top}A AA=(AA)=AA=AA

是否正定呢?

判别式
X ⊤ ( A ⊤ A ) X = ( A X ) ⊤ ( A X ) = ∣ A X ∣ 2 ≥ 0 X = 0 , A X = 0 X^{\top}(A^{\top}A)X=(AX)^{\top}(AX)=\lvert AX\rvert^2 \ge0\\ X=0,\quad AX=0 X(AA)X=(AX)(AX)=AX20X=0,AX=0

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: MIT(麻省理工学院)的线性代数公开课非常详细和全面,这门课程是由麻省理工学院的教授Gilbert Strang主讲的。课程内容涵盖了线性代数的基本概念和应用,将线性代数的理论与实践相结合。 这门课程的笔记非常详细,内容包括了课堂讲义、示例问题的详细解析、证明过程和习题答案等等。课程的整个结构非常清晰,从基础的向量、矩阵和行列式开始讲解,逐渐深入到线性方程组、特征值和特征向量、相似矩阵等内容。 在笔记中,每个概念和理论都会进行详细的解释和证明,帮助学生更好地理解和掌握相关知识。同时,笔记还提供了丰富的示例和习题,让学生通过实际的问题来巩固和应用所学知识。 另外,笔记中还有大量的图表、图示和实例来帮助学生直观地理解和记忆各种概念和算法。特别是对于抽象的概念,通过图形化的解释可以更好地帮助学生理解。 总之,MIT的线性代数公开课的笔记内容非常详细和全面,适合对线性代数感兴趣的学生参考。无论是作为学习线性代数的资料,还是作为复习和巩固知识的辅助材料,这些笔记都是非常有价值的资源。无论是在理论还是应用层面,学生都能够通过这些笔记全面地掌握线性代数的知识。 ### 回答2: MIT线性代数公开课是由麻省理工学院开设的一门线性代数课程,涵盖了从基础概念到高阶技巧的全方位学习内容。下面是对该课程的笔记总结: 该课程由吉尔伯特•斯特朗(Gilbert Strang)教授主讲,他是一位著名的数学家和教育家,为学生提供了一种简单而深入的学习方法。 该课程共分为26节课,每节课都有对应的讲义和视频,以及一些习题和作业,使学生能够更好地掌握课程内容。 课程首先介绍了向量和矩阵的基础知识,讲解了向量的加法、减法和数乘运算,以及矩阵的加法、减法和乘法运算,并且讲解了这些运算的几何意义。然后,课程进一步探讨了线性方程组的求解方法,包括高斯消元法和矩阵的逆运算。这些内容为后续课程奠定了基础。 接下来,课程介绍了行列式和特征值的概念,并讲解了如何计算行列式和求解特征值和特征向量。特征值和特征向量在矩阵的变换中起着重要的作用,因此对于理解线性代数的应用非常重要。 随后,课程进一步深入探讨了线性变换、正交性和投影等概念,以及特殊矩阵的性质,如对称矩阵正定矩阵。这些内容使学生能够更好地理解线性代数在实际应用中的重要性。 最后,课程介绍了一些高级线性代数的内容,如奇异值分解和特殊矩阵的标准形式。这些内容对于研究生和专业领域的学生尤为重要。 总的来说,MIT线性代数公开课提供了一套完整、系统的线性代数学习资源,不仅适用于初学者,还可以帮助已经具备一定线性代数基础的学生深入学习。课程中的讲义和视频内容清晰明了,配有大量实例和习题,以及讲解中的实时演算,确保学生能够深入理解和掌握线性代数的核心概念和技巧。无论是在学术研究还是职业发展中,这门课程都具有重要的参考价值。 ### 回答3: 麻省理工学院(MIT)的线性代数公开课是一门非常出色的公开课,内容十分详细并且完整。以下是对该公开课的超详细笔记。 该公开课以线性代数为主题,通过教授线性代数的基本概念、理论和应用,帮助学生建立起对线性代数的深入理解和应用能力。 课程从基本概念讲起,首先介绍了向量和矩阵的定义、性质和操作。然后深入讲解了线性方程组的解法,包括高斯消元法和矩阵的行列式。接下来,课程探讨了向量空间和矩阵空间的性质及其应用,如子空间、基、维数等概念。进一步,课程讲解了线性变换和特征值、特征向量的概念及其重要性。 在讲解了线性代数的基本理论后,课程引入了矩阵分解和特殊矩阵的概念,如LU分解、QR分解和特征值分解等。随后,课程介绍了正交向量、正交矩阵和正交变换的概念及其在几何变换、信号处理等领域的应用。 此外,课程还涉及了线性代数在图论、最小二乘问题、数据压缩等领域的应用。通过实例和案例分析,课程帮助学生将线性代数的理论知识与实际问题相结合,提高解决实际问题的能力。 值得一提的是,该公开课还通过演示和实验的方式,让学生亲自动手进行线性代数的计算和应用,培养了学生的实践能力和创造力。 总的来说,麻省理工学院的线性代数公开课以其详细的内容和完整的知识体系,在教授线性代数知识和培养学生的应用能力方面取得了优异的成绩。无论是对于想要深入学习线性代数的学生,还是对于希望提高问题解决能力的人群,这门公开课都是非常推荐的选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值