线性代数笔记26--正定矩阵、最小值

本文介绍了正定矩阵的定义、判定条件(包括主元条件和迹大于零),并通过实例说明了如何通过特征值和矩阵乘法判断正定性。此外,还讨论了极小值问题以及正定矩阵的性质,如正定矩阵加法的性质和对称矩阵正定性的判别方法。
摘要由CSDN通过智能技术生成

1. 正定矩阵

判断正定矩阵

对于二阶的来说

A = [ a b c d ] A= \begin{bmatrix} a & b \\ c & d \end{bmatrix} A=[acbd]

判定条件

  1. λ 1 > 0 , λ 2 > 0 \lambda_1 \gt 0,\lambda_2 \gt 0 λ1>0,λ2>0
  2. a > 0 , a c − b 2 > 0 a \gt0,ac-b^2 \gt0 a>0,acb2>0
  3. 主元 a > 0 , a c − b 2 a > 0 a\gt0 ,\frac{ac-b^2}{a} \gt 0 a>0,aacb2>0
  4. X ⊤ A X = 0 X^{\top}AX=0 XAX=0

前三个都是验证的条件,最后一个为实际使用的条件。

例子
[ 2 6 6 19 ] \begin{bmatrix} 2 & 6\\ 6 & 19\\ \end{bmatrix} [26619]
为正定矩阵。

[ 2 6 6 18 ] \begin{bmatrix} 2 & 6\\ 6 & 18\\ \end{bmatrix} [26618]
为半正定、奇异矩阵。
( λ = 0 , 20 ; p i v o t : 2 \lambda=0,20;pivot:2 λ=0,20;pivot:2)

X ⊤ A X = [ X 1 X 2 ] [ 2 6 6 18 ] [ x 1 x 2 ] = [ x 1   x 2 ] [ 2 x 1 + 6 x 2 6 x 1 + 18 x 2 ] = 2 x 1 2 + 12 x 1 x 2 + 18 x 2 2 X^{\top}AX=[X_1 X_2] \begin{bmatrix} 2 & 6\\ 6 & 18 \end{bmatrix} \begin{bmatrix} x_1\\x_2 \end{bmatrix}= \begin{bmatrix} x_1\ x_2 \end{bmatrix} \begin{bmatrix} 2x_1+6x_2\\6x_1+18x_2 \end{bmatrix}= 2x_1^2+12x_1x_2+18x_2^2 XAX=[X1X2][26618][x1x2]=[x1 x2][2x1+6x26x1+18x2]=2x12+12x1x2+18x22

A = L U A = [ 2 6 6 20 ] A = L U = [ 1 0 3 1 ] [ 2 6 0 2 ] A=LU\\ A= \begin{bmatrix} 2 & 6 \\6 & 20 \end{bmatrix}\\ A=LU=\begin{bmatrix} 1 & 0\\ 3 & 1\\ \end{bmatrix} \begin{bmatrix} 2 & 6\\0 & 2 \end{bmatrix} A=LUA=[26620]A=LU=[1301][2062]

刚好对应
2 ( x + 3 y ) 2 + 2 y 2 2(x+3y)^2+2y^2 2(x+3y)2+2y2

消元过程对应配方。

2. 极小值

极小值:
一阶导为0,二阶导 d 2 y d x 2 > 0 \frac{d^2y}{dx^2}\gt0 dx2d2y>0

3 × 3 3\times3 3×3的例子

A = [ 2 − 1 0 − 1 2 − 1 0 − 1 2 ] A= \begin{bmatrix} 2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 2\\ \end{bmatrix} A= 210121012

  • d e t   2 , 3 , 4 det\ 2,3,4 det 2,3,4
  • p i v o t 2 , 3 / 2 , 4 / 3 pivot 2,3/2,4/3 pivot2,3/2,4/3
  • e i g e n v a l u e   2 − 2 , 2 , 2 + 2 eigenvalue\ 2-\sqrt[]{2},2,2+\sqrt[]{2} eigenvalue 22 ,2,2+2

X ⊤ A X = 2 x 1 2 + 2 x 2 2 + 2 x 3 2 − 2 x 1 x 2 − 2 x 2 x 3 X^{\top}AX=2x_1^2+2x_2^2+2x_3^2-2x_1x_2-2x_2x_3 XAX=2x12+2x22+2x322x1x22x2x3

3. 正定矩阵判断

正定矩阵

X ⊤ A X > 0 ( e x c e p t   f o r   X = 0 ) X^{\top}AX>0(except\ for\ X=0) XAX>0(except for X=0)

A   B A\ B A B正定,则 A + B A+B A+B正定

X ⊤ A X > 0 X ⊤ B X > 0 X ⊤ A X + X ⊤ B X > 0 ( X ⊤ A + X ⊤ B ) X > 0 X ⊤ ( A + B ) X > 0 X^{\top}AX \gt 0\\ X^{\top}BX \gt 0\\ X^{\top}AX+X^{\top}BX \gt 0\\ (X^{\top}A+X^{\top}B)X \gt 0\\ X^{\top}(A+B)X \gt 0\\ XAX>0XBX>0XAX+XBX>0(XA+XB)X>0X(A+B)X>0

对于对称矩阵

A ⊤ A = ( A ⊤ A ) ⊤ = A ⊤ A ⊤ ⊤ = A ⊤ A A^{\top}A=(A^{\top}A)^{\top}=A^{\top}A^{\top^{\top}}=A^{\top}A AA=(AA)=AA=AA

是否正定呢?

判别式
X ⊤ ( A ⊤ A ) X = ( A X ) ⊤ ( A X ) = ∣ A X ∣ 2 ≥ 0 X = 0 , A X = 0 X^{\top}(A^{\top}A)X=(AX)^{\top}(AX)=\lvert AX\rvert^2 \ge0\\ X=0,\quad AX=0 X(AA)X=(AX)(AX)=AX20X=0,AX=0

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值