Authors
Sergey Zagoruyko Nikos Komodakis
Sergey Zagoruyko
Abstract
网络不断向更深发展,但是有时候为了得到少量的accuracy的增加,却需要将网络层数翻倍,也会减少feature的reuse,降低训练速度。作者提出了wide residual network,16层的表现就比之前的ResNet效果要好。
1 Introduction
ResNets因为过深,很多residual block只能提供少量的信息,或者只有少量的block能学到重要的信息。作者的16层网络能与1000层的resnet类似,所以作者认为ResNet的主要的能力来自于Residual block ,深度的增加只是辅助而已。
论文认为本文贡献在于:
1. 对ResNet block结构的几个重要方面进行了实验;
2. 提出了widened architecture 而且更好;
3. 提出了deep residual networks使用dropout的新方法
2 Wide residual network
上图中a,b是kaiming提出的两种方法,b计算更节省,但是作者想看 宽度的影响所以采用了a。作者提出增加residual block的三种简单途径:
1. 更多卷基层
2. 加宽(more feature planes)
3. 增加卷基层的filter sizes
作者说小的filters更高效,所以不准备使用超过3x3的卷积核,提出了宽度放大倍数k和卷积层数l,作者的结构:
2.1 type of convolutions
B(M)表示卷基层的结构,M是层数,如B(3,1,1)就是NIN。
2.3 width of residual blocks
参数随着长度的增加成线性增长