损失次数模型-几何分布
——非寿险精算的基本理论
1、定义
在 n n n次伯努利试验中,试验 k k k次才得到第一次成功的机率(成功概率为 p p p)。详细地说是:前 k − 1 k-1 k−1次皆失败,第 k k k次成功的概率。这里的实验次数 k k k是一个随机变量,这个随机变量的分布就是几何分布。
大家看到这个定义之后是不是想到了负二项分布的定义:一个成功概率为 p p p的伯努利试验,不断重复,直至失败 r r r次。此时成功的次数为一个随机变量,用 X X X表示。称 X X X服从负二项分布,记作 X ∼ N B ( r , p ) X \sim NB(r,p) X∼NB(r,p)。当负二项分布的 r = 1 r=1 r=1时,负二项分布就是几何分布。
*上面提到了伯努利实验,关于伯努利实验的性质,大家可以参考我之前写的文章损失次数模型-二项分布里面提到了伯努利实验的性质。
2、概率密度函数
P ( X = k ) = ( 1 − p ) k − 1 p P(X=k)=(1-p)^{k-1}p P(X=k)=(1−p)k−1p
- 公式释义:
k k k:一组实验中,实验次数为 k k k;
p p p:一次伯努利实验中,成功的概率;
1 − p 1-p 1−p:一次伯努利实验中,失败的概率;
一次伯努利试验只有两个结果,成功或失败。成功的概率为 p p p,则失败的概率就是 1 − p 1-p 1−p
P ( X = k ) P(X=k) P(X=k):一组 k k k次伯努利实验中,第 k k k次才成功的概率;
- 例子
我们现在做一组5次抛硬币实验,每次实验中正面向上的概率为0.5,则5次实验中,第五次实验才出现正面向上的概率是多少?
带入公式求解
P ( X = 5 ) = ( 1 − 0.5 ) 5 − 1 0. 5 1 = 0.03125 P(X=5)=(1-0.5)^{5-1}0.5^1=0.03125 P(X=5)=(1−0.5)5−10.51=0.03125
<公式理解>
5次抛硬币实验中,第五次才出现正面向上,说明前面四次全是反面向上,第五次才是正面向上,所以公式可列为: ( 1 − 0.5 ) 5 − 1 0. 5 1 (1-0.5)^{5-1}0.5^1 (1−0.5)5−10.51,前面代表4次反面向上,后面代表最后一次正面向上。
3、均值和方差
E ( X ) = 1 p E(X)=\frac{1}{p} E(X)=p1
D ( X ) = 1 − p p 2 D(X)=\frac{1-p}{p^2} D(X)=p21−p
通过之前写的几期发现,大家好像并不喜欢看推导过程,可能是太枯燥,哈哈哈~所以这里就不写推导过程了,主要注重知识的运用方面。想看推导过程的小伙伴可以看参考资料里面的参考文章
4、几何分布在精算中的应用
4.1、定义
假设损失次数
N
N
N服从参数为
β
\beta
β的几何分布,则发生
k
k
k次损失的概率为:
P
(
N
=
k
)
=
β
k
(
1
+
β
)
k
+
1
P(N=k)=\frac{\beta^k}{(1+\beta)^{k+1}}
P(N=k)=(1+β)k+1βk
几何分布的均值和方差为:
E ( N ) = β E(N)=\beta E(N)=β
D ( N ) = β ( 1 + β ) D(N)=\beta(1+\beta) D(N)=β(1+β)
这里的 β = 1 − p p \beta=\frac{1-p}{p} β=p1−p,将 β \beta β带入后我们会发现上述均值公式与我们前面提到的均值公式不一样,这是因为几何分布有两种不同的情况:①为得到1次成功而进行 n n n次伯努利试验, n n n的概率分布,取值范围为1,2,3,…;这种情况得到的期望和方差就是我们在3、均值和方差中提到的结果。② m = n − 1 m=n-1 m=n−1次失败,第 n n n次成功, m m m的概率分布,取值范围为0,1,2,3,…;这种情况的均值为 E ( X ) = 1 − p p E(X)=\frac{1-p}{p} E(X)=p1−p,方差与第①种相同。非寿险精算中采用的是第②种。
4.2、性质
(1)几何分布是负二项分布当 r = 1 r=1 r=1时的特例。
(2)几何分布具有无记忆性。如果用几何分布描述损失次数,则在给定发生 m m m次损失的情况下,以后的损失次数分布与 m m m无关。换而言之,如果损失次数服从几何分布,则未来损失次数的分布不受已经发生损失次数的影响。
(3)几何分布的众数恒为0。
5、软件实操
因为几何分布只有一个参数,所以每次只需要改变一下其 p p p值看一下图像变化即可。
画图代码
import numpy as np
import matplotlib.pyplot as plt
def bpmf(max_n,p):
'''
Parameters
----------
max_n : int
几何分布的最大实验次数.
p : float
几何分布中,每次实验的成功的概率.
Returns
-------
k_sample: list
几何分布中,实验次数.
probability : lsit
几何分布中,对应成功次数的概率.
'''
n=max_n
p=p
k_sample=np.arange(1,n+1)#会返回一个1至sample的连续整数列表
probability=[]
for k in k_sample:
temp = (1-p)**(k-1)*p#计算二项分布的概率
probability.append(temp)
return k_sample,probability
n=20
p=0.2
plt.subplot(1,1,1)#定义图片的布局,针对一张图片来说可以省略该代码
k,probability=bpmf(n,p)#调用自定义的二项分布函数
plt.plot(k,probability,"r",label="p="+str(p))#画曲线图,并定义曲线为红色"r",并显示图例label(后面是图例名称)
plt.plot(k,probability,"ro")#画散点图,并定义散点为红色
plt.title("Geometric distribution")#设置图片标题
plt.xlabel("The k success")#设置图片x轴说明
plt.ylabel("probability")#设置图片y轴说明
plt.legend(loc=0)#将图例放在合适的位置,让系统自动查找
输出结果
从图片可以看出,随着实验次数的增多,几何分布的概率越小,最后趋于0。从图形也看出,几何分布与正态分布有明显差异,因此并不能用正态分布近似几何分布。
—End—
*** 参考资料 ***
1、《非寿险精算学》孟生旺著