运行yolo v5-5.0版本报错找不到SPPF错误,进行解决

本文介绍了如何修复在运行YoloV5-5.0时遇到的找不到SPPF错误。错误源于models文件夹下common.py中缺少SPPF类。解决方案是在common.py文件中添加SPPF类,通过复制指定代码段完成修复。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先找到yolov5下面的models文件夹下面的common.py文件,如下所示:

找到该文件夹下面的SPP类,

 然后在该类的上面添加SPPF类,如下所示,

class SPPF(nn.Module):
    def __init__(self, c1, c2, k = 5):
        super().__init__()
        c_ = c1 // 2
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))

 可以直接将上面代码复制上去即可。然后该错误就进行了解决。

### SSDA-YOLO算法介绍 SSDA-YOLO是一种全新的基于半监督域自适应的目标检测方法,它通过将单阶段目标检测YOLOv5与域自适应技术相结合,显著提高了跨域检测的性能[^1]。该方法的核心在于解决传统领域自适应目标检测(Domain Adaptive Object Detection, DAOD)中存在的计算复杂度高以及标注成本高的问题。 #### 基本原理 SSDA-YOLO的主要创新点包括以下几个方面: 1. **知识蒸馏框架结合Mean-Teacher模型** 为了使学生模型能够更好地学习来自源域的知识并泛化到未标记的目标域上,SSDA-YOLO采用了一个知识蒸馏框架,并将其适配至Mean-Teacher模型结构中。这种设计使得学生模型可以从教师模型中学得更鲁棒的特征表示,进而提升对无标签数据的学习效果[^2]。 2. **场景风格迁移生成伪图像** 论文中提出了利用场景风格迁移技术,在不同的域之间交叉生成伪图像。这一过程有助于缩小源域和目标域之间的分布差距,从而减少因域间差异而导致的性能下降。 3. **一致性损失函数的设计** 此外,研究者们还定义了一种简单而有效的一致性损失项,用于约束模型在相同输入条件下产生的预测结果保持一致。这一步骤对于增强模型面对未知环境时的表现至关重要。 #### 实现方式 以下是实现SSDA-YOLO的关键步骤和技术细节: 1. **网络架构的选择** 使用轻量化的YOLOv5作为基础检测器,因其高效性和实时处理能力非常适合实际应用场景中的需求。 2. **训练流程概述** - 初始阶段:先用完全标注好的源域数据集预训练整个系统; - 中期阶段:引入部分未标注的目标域样本参与联合优化过程;此时会同时考虑分类准确性、定位精度以及上述提到的各种正则化条件; - 后续微调:随着更多高质量伪标签被动态更新加入进来,继续迭代直至收敛为止[^4]。 3. **代码资源链接** 如果希望深入探索该项目的具体实现,则可以访问官方开源仓库获取最新版本代码及相关文档资料:[GitHub项目地址](https://github.com/hnuzhy/SSDA-YOLO) ```python import torch from ssda_yolo import SSDAYOLOModel # 初始化模型 model = SSDAYOLOModel() # 加载权重文件 (假设已下载好预训练参数) checkpoint_path = 'path/to/pretrained_weights.pth' state_dict = torch.load(checkpoint_path) model.load_state_dict(state_dict) # 设置设备为GPU/CPU device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device).eval() ``` 以上片段展示了如何加载预先训练完成后的SSDA-YOLO模型实例,并准备好执行推理操作的基础代码模板。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI炮灰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值