Planning模块
文章平均质量分 88
规划系列学习
Big David
前途是光明的 道路是曲折的
展开
-
自动驾驶决策 - 规划 - 控制 (持续更新!!!)
自动驾驶学习记录原创 2024-03-19 22:42:07 · 2521 阅读 · 3 评论 -
规划系列的常见术语:龙格现象、控制点、型值点和插值点、规划控制的开环、闭环、前馈、反馈与重规划
详解了一些常见的自动驾驶规划术语原创 2024-03-19 18:38:18 · 2463 阅读 · 1 评论 -
车辆运动学和动力学模型
详解了车辆运动学和动力学的原理和推导原创 2024-03-19 17:05:24 · 4820 阅读 · 3 评论 -
局部路径规划算法 - B样条曲线(B-spline Curves)
本文详解了B样条以及代码实现原创 2024-03-19 14:59:18 · 2532 阅读 · 0 评论 -
局部路径规划算法 - 贝塞尔曲线法 C++ matlab
详解了贝塞尔曲线的原理以及代码实现原创 2024-03-19 10:16:22 · 1503 阅读 · 0 评论 -
局部路径规划算法 - 人工势场法
详解了人工势场法原理以及代码实现原创 2024-03-18 22:58:45 · 3125 阅读 · 1 评论 -
局部路径规划算法 - 多项式曲线法
详解了曲线插值法以及代码实现原创 2024-03-18 17:40:45 · 1847 阅读 · 2 评论 -
Apollo决策规划 - EM planner
文章详细讲解了EM planner的理论,包括规划需要的背景知识🍎:五次多项式、凸优化和非凸优化、直角坐标与自然坐标转换,参考线🍎:平滑算法、避障(规划起点,轨迹拼接),自动驾驶的轻决策和重决策🍎,二次规划带来的问题,SL、ST如何迭代求解原创 2024-03-08 11:27:40 · 1910 阅读 · 2 评论 -
移动机器人规划 - 基于采样的路径搜索
本文系统介绍了常见的基于采样的规划算法原创 2024-01-20 17:40:05 · 1057 阅读 · 0 评论 -
移动机器人规划 - 基于搜索的路径规划算法
本文详细讲解了基于搜索的规划算法BFS,A*,Dijstra,JPS😀😀😀原创 2024-01-18 11:52:12 · 1704 阅读 · 0 评论 -
移动机器人规划 - 概述
本文对高飞老师的移动机器人运动规划课程第一章做了学习记录,方便日后复习回顾😘原创 2024-01-16 02:08:56 · 1267 阅读 · 0 评论 -
决策规划框架 - (解耦:路径规划和速度规划 | 耦合:行为规划和轨迹规划)
本文介绍了决策规划框架,解耦和耦合策略原创 2023-12-31 16:10:07 · 3165 阅读 · 1 评论 -
基于优化的规划方法 - 数值优化基础 Frenet和笛卡尔的转换 问题建模 实现基于QP的路径优化算法
本文讲解了基于优化的规划算法,包括数值优化基础、Frenet和笛卡尔之间的转换、问题建模、OSQP原创 2023-12-29 22:53:16 · 2122 阅读 · 0 评论 -
基于车辆运动学的规划算法 - Hybrid A*/ State Lattice Planning (前置知识:自行车模型、Dubins、Reeds Shepp、多项式曲线、螺旋曲线)
本文将按顺序讲解基于车辆运动学的规划算法,以及需要的前置知识:自行车模型、Dubins和Reeds Shepp曲线、多项式曲线和螺旋曲线原创 2023-12-28 21:16:37 · 3162 阅读 · 0 评论 -
基于采样的自动驾驶规划算法 - PRM,RRT,RRT*,CL-RRT
本文详细介绍了常见的自动驾驶基于采样的规划算法,PRM算法、RRT算法、RRT*算法、CL-RRT算法原创 2023-12-26 19:27:34 · 2173 阅读 · 0 评论 -
基于图搜索的自动驾驶规划算法 - BFS,Dijstra,A*
本文讲解BFS,Dijstra,A*,动态规划的算法原理,不正之处望读者指正原创 2023-12-24 16:11:54 · 1808 阅读 · 1 评论 -
A*算法原理及C++实现
详细手撕了A*算法原创 2023-11-23 18:53:16 · 2398 阅读 · 2 评论 -
运动规划Motion-Planning随笔
规划随笔原创 2023-11-23 15:36:30 · 124 阅读 · 0 评论 -
路径规划-learning
本文概述了路径规划的基础知识原创 2023-10-17 14:50:24 · 1092 阅读 · 0 评论 -
b站老王 自动驾驶决策规划学习记录(十二)
大幅修改EM planner,变成了public road planner(取消了SL,ST迭代机制,SL只管静态障碍物,ST只管动态障碍物,加入scenario模块)这种方法SL还是会影响ST,ST不影响SL,因为SL会生成一个路径,路径的几何形状会影响到动态障碍物的交互。所以SL影响ST,ST不影响SL。因为车的纵向变化能力高于横向,导致动态障碍物车的速度变化剧烈程度远高于路径,预测难以测准,预测不准导致ST图剧烈变化=>速度规划结果剧烈变化。若ST影响SL,会导致SL规划容易不稳定,朝令夕改。原创 2023-09-21 18:11:49 · 713 阅读 · 0 评论 -
b站老王 自动驾驶决策规划学习记录(十一)
ST图与迭代优化原创 2023-09-20 09:41:13 · 590 阅读 · 1 评论 -
b站老王 自动驾驶决策规划学习记录(十)
1. 二次规划崩溃问题2. 车控制不稳,抖动剧烈问题3. 决策不稳定,朝令夕改问题4. 速度规划如何影响路径规划原创 2023-09-19 21:40:10 · 487 阅读 · 0 评论 -
b站老王 自动驾驶决策规划学习记录(九)
结合即得到二次规划下的最优路径,再转化为Cartesian坐标,路径规划完成。接着上一讲学习记录b站老王对自动驾驶规划系列的讲解。二次规划的求解空间就在此凸空间中搜索。则分段加加速度约束为。原创 2023-09-19 19:49:37 · 375 阅读 · 0 评论 -
b站老王 自动驾驶决策规划学习记录(八)
(2)有粗解,通过设计代价函数,可以使粗解“满足”硬约束(碰撞、最小曲率),这样使二次规划求解成功的机率大大增加(因为粗解在凸空间内部,所以该凸空间的“扭曲”程度至少有粗解兜底)大大缓解了基于人为规则的决策所造成的凸空间扭曲情况。轻决策:无先验规则,空间离散化,设计cost function,动态规划算法求解离散空间的最优路径,该最优路径开辟凸空间。(2)在感知不强的情况下仍然能做决策(融合了人的智慧)(2)人给出的决策所开辟的凸空间未必满足约束。轻决策和重决策的融合(博弈论)无需在意二次规划的约束形式(原创 2023-09-19 17:33:08 · 478 阅读 · 0 评论 -
b站老王 自动驾驶决策规划学习记录(七)
用轨迹拼接,用上一帧的轨迹和当前时候做判断,如果误差不太大,证明控制做的不错,就以上一帧的t+100ms作为规划起点。,100ms的轨迹,但只把100ms后的点发了出去,必然造成控制效果变差。例:16:00:00开始规划 16:00::10规划完成,规划出了4秒轨迹。(找不到就找100ms相邻的2个时间,做插值),作为规划输出发出去。答:发绝对时间(推荐),因为做推荐,做控制,绝对时间更直观方便。控制根据当前控制周期的时间,搜索轨迹,找到当前时间对应的。轨迹的时间是相对时间,还是绝对时间?原创 2023-09-19 11:50:17 · 339 阅读 · 0 评论 -
b站老王 自动驾驶决策规划学习记录(六)
回顾上一节:参考线,提供光滑的frenet坐标轴以host在reference line的投影为坐标原点,建立frenet坐标系。障碍物投影,生成SL图确定规划的起点定位得到的host_x,host_y投影到referenceline,得到SL坐标(0,l0l_0l0),以此点为路径规划的起点这样做是错的考虑控制是不完美的规划以100ms周期执行,在上个周期已经规划出轨迹。正确的做法:以(S0l0S_0,l_0S0l0)作为规划的起点。原创 2023-09-18 18:04:57 · 548 阅读 · 0 评论 -
b站老王 自动驾驶决策规划学习记录(五)
一般情况下不会,规划周期是100ms,即使以50m/s运动,车也只是走了五米。五米内的道路不太可能出现这么扭曲的几何,在上个规划周期的匹配点上一般只有一个极小值。每个规划周期内,找到车在导航路径上的投影点,以投影点为坐标原点,往后取30m,往前取150m范围内的点,做平滑,平滑后的点的集合称为参考线。(1)减少规划频率,规划算法会100ms执行一次,控制算法每10ms执行一次。(1)过长的路径不利于坐标转换(找匹配点,计算s)希望cost function越小越好。对应的点作为本周期的匹配点。原创 2023-09-18 09:31:15 · 683 阅读 · 0 评论 -
b站老王 自动驾驶决策规划学习记录(四)
龙格现象:高次多项式拟合可能会出现震荡,慎用高次多项式。尽可能用分段低次多项式去拟合,而不是高次多项式。在数学中,笛卡尔坐标系 (Cartesiancoordinate system) 是一种正交坐标系,亦称为直角坐标系。用向量法推导,降低推导难度车:host_vehicle已知车在Cartesian坐标系下的rh⃗vh⃗ah⃗khrhvhahkh,求车在以道路为坐标轴的frenet坐标下的坐标ss˙s¨ll′l。原创 2023-09-14 21:29:15 · 864 阅读 · 1 评论 -
b站老王 自动驾驶决策规划学习记录(三)
算出一条满足约束的最优轨迹。什么是最优?平滑性舒适性尽可能短,耗时少约束:(1)轨迹连续性(2)无碰撞(3)交规(4)车辆动力学衡量轨迹质量往往用cost function表示sfta0a1ta5t5sfta0a1t...a5t5a0a1a5都是未知常数(a_{0},a_{1},...,a_{5}都是未知常数)a0a1...a5都是未知常数Jw1f˙2w2f¨2。原创 2023-09-07 14:46:30 · 500 阅读 · 0 评论 -
b站老王 自动驾驶决策规划学习记录(二)
自动驾驶决策规划之五次多项式上一讲:b站老王 自动驾驶决策规划学习记录(一)接着上一讲学习记录b站老王对自动驾驶规划系列的讲解参考视频:自动驾驶决策规划算法第一章第一节 细说五次多项式0 前言有必要理解一下曲线插值法,对理解五次多项式很有帮助。常用三次多项式曲线或五次多项式曲线规划无人车运动轨迹。多项式曲线一般为奇数,这是因为他的边界条件所导致。边界条件一般包含车辆的初始状态和终止状态,所以两个状态有偶数个系数,也造成了方程是奇数多项式。三次多项式:位置、速度(2 x 2 = 4)五次原创 2023-09-06 11:39:18 · 604 阅读 · 1 评论 -
b站老王 自动驾驶决策规划学习记录(一)
(1)决策算法会给一个车辆的行驶意图,会指导车辆该避让,该超车,该左转还是该右转,但是决策规划算法不会给具体的运动建议,例如左转多少度,车辆加速到多少。运动规划生成的轨迹是决策规划模块的最终输出,具有详细的路径速度信息,执行频率与决策相同,为10Hz,同样,运动规划也要求一定的稳定性。L2这个概念很宽泛,自动驾驶的功能只有巡航、车道保持或者车什么都能做,但是只要驾驶员要负全责,这个车就是L2级别的自动驾驶。EM Planner是Apollo的经典决策规划算法,擅长处理复杂环境下的决策规划问题。原创 2023-09-05 16:12:58 · 764 阅读 · 1 评论 -
Motion Planning运动规划(一)
路径规划:在规定范围的区域,连接起点和终点的序列点或曲线成为路径,构成路径的策略叫路径规划。路径规划的目标:规划出无碰撞的路径,同时路径的长度尽可能短。全局路径规划:已知地图信息,根据给定的目标点进行总体路径的规划。局部路径规划:地图信息未知或部分可知,根据附近的障碍物信息进行避障轨迹的规划。离线路径规划:在环境先验信息上进行的,完整的先验信息只适用于静态环境。在线路径规划:基于传感器信息的不确定环境的路径规划,轨迹需要在线规划。基于曲线拟合:直线、圆弧、多项式曲线、贝塞尔曲线、羊角曲线。原创 2023-07-31 23:43:27 · 231 阅读 · 0 评论