量化相关科普
文章平均质量分 92
量化交易的知识补充
BigQuant
这个作者很懒,什么都没留下…
展开
-
算法那么多,AI量化交易策略如何选择最佳算法?
在实际场景中,对于某些较为单一的选股条件,或者特征因子,没有经过大量细节优化修正的神经网络模型,效果有可能不及预期。但是,需要注意的是,深度学习算法的学习过程通常需要较长时间,并且需要更多的计算资源。正常情况下,在处理少量的股票量价数据的时候,stockranker排序算法就已经有很好的表现,初步制定策略的时候不妨先考虑从stockranker下手(与此同时,我们同样可以看出在相同的因子和训练数据中,未经过深度调整的DNN神经网络模型表现不佳,回测收益为负数。训练集:14-2018年-01-14。原创 2023-11-30 19:05:57 · 853 阅读 · 0 评论 -
机器学习因子:在线性因子模型中捕捉非线性
虽然机器学习(机器学习)算法已经存在了几十年,但最近它们在包括金融在内的许多领域受到了越来越多的关注,尤其是在解释资产回报的应用上。虽然线性因子模型多年来一直是理解风险敞口、风险和投资组合表现的重要工具,但没有哪一种模型是一成不变的,即因子敞口和回报之间的关系必须是线性的。转载 2022-10-17 13:34:10 · 851 阅读 · 0 评论 -
机器学习中的无监督学习是什么?
顾名思义,“无监督”学习发生在没有监督者或老师并且学习者自己学习的情况下。例如,考虑一个第一次看到并品尝到苹果的孩子。她记录了水果的颜色、质地、味道和气味。下次她看到一个苹果时,她就知道这个苹果和之前的苹果是相似的物体,因为它们具有非常相似的特征。她知道这和橙子很不一样。但是,她仍然不知道它在人类语言中的名称是什么,即“苹果”,因为不知道这个标签。这种不存在标签(在没有老师的情况下)但学习者仍然可以自己学习模式的学习称为无监督学习。...原创 2022-07-04 14:43:03 · 9339 阅读 · 0 评论 -
量化交易的相对强弱(RSI )指标计算及策略
相对强弱指数 (RSI) 指标告诉我们资产的相对强弱。换句话说,RSI 告诉我们股票相对于自身的表现(或不表现)。RSI 被视为一种强大的技术指标,可用于分析市场,并且是交易者武器库的重要组成部分,因为它可以帮助他们在市场时机上做出更好的决策。当然,与其他指标一样,始终建议使用多个指标,因为它可以帮助我们避免对一个指标的限制和过度依赖。因此,在本博客中,除了了解 RSI 指标外,我们还将了解它的局限性以及何时使用它们。...原创 2022-07-04 14:11:52 · 2251 阅读 · 0 评论 -
建立量化交易趋势跟踪策略的五个指标
趋势跟踪策略是您只需顺势而为的策略,即在价格上涨时买入,在价格开始下跌时卖出。在趋势跟踪策略中,人们的目标不是预测或预测,而只是关注市场上的任何新兴趋势。我们谈论:我们在本文中介绍了以下趋势指标:由于互联网的力量,我们都听说过病毒式传播。尽管这是相同的概念,但目标不同。在金融界也有 FOMO(害怕错过),尽管在这里,原因是普遍希望站在胜利的一方。情绪驱动人。虽然我们使用算法交易(即量化交易策略)来抑制情绪化交易,但同样也可以用于利用情绪并将其货币化。趋势跟踪策略旨在利用市场情景获利。...原创 2022-07-04 12:06:03 · 4164 阅读 · 0 评论 -
如何利用布林带构建量化交易策略?
布林带之于交易就像莎士比亚之于文学,如果你想在交易世界中留下印记,这非常重要而且很难避免。布林带是一种技术指标,用于以更好的方式分析市场并帮助我们对资产价格做出更好的假设,即资产是否超买或超卖。本文将讲述布林带的基本原理及如何实现用布林带 构建量化交易策略...转载 2022-07-04 10:21:56 · 1412 阅读 · 0 评论 -
七种量化选股模型
七种量化选股模型【新增策略案例】原创 2022-01-05 14:50:47 · 3180 阅读 · 0 评论 -
AI量化策略快速理解
导语: 人工智能(Artificial Intelligence,简称AI)的应用领域主要包括机器学习、概率推理、机器人技术、计算机视觉和自然语言处理。开发AI量化策略就是采用人工智能的相关技术和算法构建模型来处理市场海量数据之间的复杂关系。本文将带你走进人工智能量化投资的世界我们在用AI来编写量化策略过程中,主要用到了机器学习,先来从一张图直观了解一下什么是机器学习,人类对新问题做出有...原创 2018-12-28 14:59:00 · 4371 阅读 · 0 评论 -
传统量化策略 VS AI量化策略
在BigQuant人工智能量化投资平台上可以快速开发股票传统策略和股票AI策略,今天我们就拿市值因子来练手,看看两个策略在2015-01-01到2016-12-31这两年时间各自的收益风险情形。市值因子是国内股票市场能够带来超额收益的alpha因子,已经被验证为长期有效的因子,也是广大私募基金常用的因子之一,传统的选股策略的股票组合大多在市值因子上有很大的风险暴露。希望了解多因子选股策略的小伙伴...原创 2018-12-28 11:23:20 · 3340 阅读 · 0 评论 -
AI量化策略,我该如何理解你?
人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。理解机器学习算法——以StockRanker为例机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要...原创 2018-12-28 14:46:22 · 3607 阅读 · 0 评论 -
【精品】全网人工智能机器学习免费资源汇总清单
早在21世纪初,我在编写关于网络和编程的书的时候,我就发现,互联网是一个很好的资源,但是它还不完善。 那时,博客已开始流行。但是YouTube还不是很普遍,同样Quora,Twitter和播客用户也很少。十年过后,我一直在潜心钻研人工智能和机器学习,局面发生了翻天覆地的变化。互联网上现在有非常丰富的资源——当你要寻找选择你想要的资源时,你很难抉择你应该从哪里开始(和停止)!为了帮助大家节省一些...翻译 2019-01-08 18:14:05 · 559 阅读 · 0 评论 -
AI和机器学习对量化交易领域的影响
本文为Michael Harris 在欧洲作为邀请嘉宾为高净值客户和交易者所做的一场演讲概要,主题为“人工智能与机器学习将对交易与投资产生的巨大影响”。文章主要从四个方面进行阐释,包括交易、阿尔法策略、技术分析和交易员。以下为原文主要内容:BigQuant 人工智能量化投资平台 是一站式的Python+机器学习+量化投资平台,对人工智能量化投资感兴趣的朋友可以直接打开浏览器进一步学习研究。...翻译 2019-01-09 11:11:11 · 3244 阅读 · 0 评论 -
摩根大通的最新指南——将AI应用于算法交易
如果你对银行以及金融领域的机器学习或人工智能(人工智能量化投资)应用感兴趣的话,你一定了解 JPM(摩根大通)去年发布的在金融领域有关大数据及人工智能应用指南,你也一定会对他们刚刚发布的一份关于将 “数据驱动下的机器学习应用于算法交易”问题的新报告感兴趣。去年那份长篇报告是由JPM 宏观量化研究团队负责人,素有“半人半神”之称的 Marko Kolanovic,以及另一位在去年四月刚从美林银行...翻译 2019-01-09 11:51:00 · 2476 阅读 · 0 评论 -
能否通过历史股价预测未来股价?
BigQuant 人工智能量化投资平台 是一站式的Python+机器学习+量化投资平台,曾给出过《基于LSTM的股票价格预测模型》样例,读完下文对人工智能量化投资感兴趣的朋友可以直接前往原文进一步学习研究。LSTM 的闹剧随着深度网络的越来越普及,软件开发人员越来越容易对其进行实现,毫无疑问,很多开发人员会用他们熟悉的基于股票价格的预测来训练长短期记忆网络。我见过好几篇论文,展示了如何通过把历...原创 2019-01-09 11:30:26 · 2977 阅读 · 0 评论 -
算法交易的成长与未来
作者:Viraj Bhagat编译:BigQuant回顾原始时代,当火是人类最伟大的成就时,当时的他们谁能想到我们人类今天所取得的成就?我经常对从公元前300年的基本欧几里德算法到现代算法的奇妙旅程感到惊讶。信息在地球上传播的速度是如此之快!算法交易的未来今天,算法交易是近年来最热门的技术之一。它消除了人为失误,改变了当今金融市场相互联系的方式,使交易公司在快速发展的市场中拥有了更强大...原创 2019-03-09 11:02:41 · 1637 阅读 · 0 评论 -
自动交易如何增加交易利润?
作者:Harry Nicholls编译:BigQuant你有没有想过如何使你的量化投资策略自动化并增加交易利润?在本文中,我们将介绍算法交易的基本知识,好处和风险。准备好开始自动交易吧! 很多技术分析都涉及观察信号指标,然后根据信号进行交易。正如我在之前的文章“一个让优秀交易者高于其他交易者的行为”中所讨论的那样,你应该在你的交易日志中记录下你所有的交易,当你获得更多的经验时,你...原创 2019-03-08 17:57:18 · 1717 阅读 · 0 评论 -
# 交易:赚取收入还是积累财富?
作者:AndyN编译:BigQuant在你做研究或者只是随意浏览百度搜索关于交易的文章时,你有没有看到过这样的话:“如何通过交易赚到第一辆兰博基尼?”“无论你在哪里你都可以通过交易谋生。”“遵循“X”黄金法则,获得难以置信的财富。”…好吧,我见过的到不少。我甚至遇到过有人说:“我刚刚辞掉工作,准备全职做交易。”每当看到这些评论,标题党和这样的广告的时候,我总是会感到十分沮丧...原创 2019-03-09 10:54:44 · 373 阅读 · 0 评论 -
跨学科的AI量化其实很简单
我在AI量化的跨学科研究邵守田在宽邦科技(BigQuant母公司)担任高级策略工程师,曾在私募基金管理过数亿规模资产。现专注AI策略研究,参与BigQuant的模块建设、算法研究、策略开发,主导了CNN\DNN等算法模型研究和构建,同时主导金融机构客户的的策略研究工作。介绍一下自己和从业的工作大家好 ,我是邵守田,毕业于东北财经大学行为金融硕士研究生。曾在私募机构任职基金经理,管理上亿规模资产,并且也取得了良好的成绩。我学习的是行为金融,本身就是一门跨学科研究的专业,结合了金融、数学、计算机三个领域的原创 2020-12-30 16:02:03 · 3672 阅读 · 0 评论