欧奈尔的RPS指标如何使用到股票预测

本文介绍了欧奈尔的RPS指标,并结合该指标如何在股票预测中运用,通过CANSLIM模型挑选潜力股。文章提供视频讲解及Python代码示例,适合在BigQuant平台上运行。
摘要由CSDN通过智能技术生成

前言

在这里插入图片描述
1988年,欧奈尔将他的投资理念写成了《笑傲股市How to Make Money in Stocks》。书中总结了选股模式CANSLIM模型,每一个字母都代表一种尚未发动大涨势的潜在优质股的特征。
在这里插入图片描述
在这里插入图片描述

视频讲解

如何结合欧奈尔的RPS指标开发策略

代码示例

# 回测引擎:初始化函数,只执行一次
def m19_initialize_bigquant_run(context):
    # 加载预测数据
    context.ranker_prediction = context.options['data'].read_df()

    # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
    context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
    # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
    # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
    stock_count = 5
    # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
    context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
    # 设置每只股票占用的最大资金比例
    context.max_cash_per_instrument = 0.2
    context.options['hold_days'] = 5

# 回测引擎:每日数据处理函数,每天执行一次
def m19_handle_data_bigquant_run(context, data):
    # 按日期过滤得到今日的预测数据
    today = data.current_dt.strftime('%Y-%m-%d')
    ranker_prediction = context.ranker_prediction[
        context.ranker_prediction.date == today]

    # 1. 资金分配
    # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
    # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
    is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
    cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
    cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
    cash_for_sell = cash_avg -<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值