风险平价组合(risk parity)理论与实践

本文介绍了风险平价组合的理论与实践;后续文章将对risk parity组合进行更深入探讨以及引入预期收益后的资产配置实战策略。感兴趣的朋友可以直接前往BigQuant人工智能量化投资平台克隆代码进行复现。

前言

  • 资产配置是个很广泛的话题,在投资中是一个非常重要的话题

  • 从使用场景分类上来看,资产配置可以是宏观的资产配置,比如货币类、债券类、权益类之间的配置;当然也可以是某一大类资产下的配置,比如在沪深300成分股不同标的之间的权重配置

  • 但不管怎么说,从方法层面上看,对于不同场景下的使用都是一致的,只不过需要注意不同场景使用下的一些特殊处理

  • 本篇作为资产配置研究系列,理论结合实践,深入浅出,可直接使用

  • 后续会根据时间安排,逐步介绍资产配置领域的相关理论与实践

摘要

  • 介绍了风险平价理论知识
  • 介绍了怎样做到风险平价
  • 风险平价实践的Python代码

简介

  • 资产配置在投资中是非常重要的过程,经典的资产配置方式就是马格维茨的均值-方差模型。目标是在给定预期收益率下最小化方差(风险),或给定风险水平下最大化收益,通过拉格朗日乘子法,可以计算出一个有效前沿,我们可以根据有效前沿来配置资产。但在实践过程中,我们常常发现计算的结果是某几个资产的权重特别大,收益和风险都集中在了这些资产上

  • 也有许多对均值方差进行优化的方法,比如加入风险厌恶系数考虑效用函数的最大化,或者加入个性化条件,要求每一大类的配置比例都不得超过35%等,还有从统计的角度出发,找一些更好的估计协方差阵的方法

  • 基于均值方差模型的不足,PanAgora基金的首席投资官Edward Qian博士提出了著名的风险平价(Risk Parity)策略,这一思想被Bridgewater基金运用于实际投资中,本贴将详细介绍风险平价配置方法的理论与实践

下方内容可前往原文,一键克隆进一步研究。

在这里插入图片描述


本文由BigQuant人工智能量化投资平台原创推出,版权归BigQuant所有,转载请注明出处。

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值