数理统计与金融
文章平均质量分 85
统计学在金融的应用
BigQuant
这个作者很懒,什么都没留下…
展开
-
如何对连续型数据进行离散化处理,并进行OneHot编码?
如何对连续型数据进行离散化处理,并进行OneHot编码?原创 2022-11-15 14:51:52 · 1094 阅读 · 0 评论 -
从均值方差到有效前沿
我们这里假设的是单期投资的情况,这个假设可以被放宽,大致不影响我们的结论和分析过程;我们虽然做了无交易成本假设,但是在实践中是需要考虑的,也是可以被建模的;我们上述分析暗含了自融假设,即可以通过建立空头头寸为多头融资,这个在实践中往往是有限制和不允许的;交易者是风险厌恶的,只基于均值方差来做投资决策;假设股票是iid正太分布,这个假设有待商榷;有效前沿是有用的工具,所有风险厌恶的投资者都应该考虑它;有效前沿是均值方差最优的机会集,是最小风险组合与最优夏普组合的线性组合;原创 2022-11-03 14:02:07 · 2392 阅读 · 1 评论 -
七种量化选股模型
七种量化选股模型【新增策略案例】原创 2022-01-05 14:50:47 · 3180 阅读 · 0 评论 -
机器学习因子:在线性因子模型中捕捉非线性
虽然机器学习(机器学习)算法已经存在了几十年,但最近它们在包括金融在内的许多领域受到了越来越多的关注,尤其是在解释资产回报的应用上。虽然线性因子模型多年来一直是理解风险敞口、风险和投资组合表现的重要工具,但没有哪一种模型是一成不变的,即因子敞口和回报之间的关系必须是线性的。转载 2022-10-17 13:34:10 · 851 阅读 · 0 评论 -
量化交易的相对强弱(RSI )指标计算及策略
相对强弱指数 (RSI) 指标告诉我们资产的相对强弱。换句话说,RSI 告诉我们股票相对于自身的表现(或不表现)。RSI 被视为一种强大的技术指标,可用于分析市场,并且是交易者武器库的重要组成部分,因为它可以帮助他们在市场时机上做出更好的决策。当然,与其他指标一样,始终建议使用多个指标,因为它可以帮助我们避免对一个指标的限制和过度依赖。因此,在本博客中,除了了解 RSI 指标外,我们还将了解它的局限性以及何时使用它们。...原创 2022-07-04 14:11:52 · 2251 阅读 · 0 评论 -
建立量化交易趋势跟踪策略的五个指标
趋势跟踪策略是您只需顺势而为的策略,即在价格上涨时买入,在价格开始下跌时卖出。在趋势跟踪策略中,人们的目标不是预测或预测,而只是关注市场上的任何新兴趋势。我们谈论:我们在本文中介绍了以下趋势指标:由于互联网的力量,我们都听说过病毒式传播。尽管这是相同的概念,但目标不同。在金融界也有 FOMO(害怕错过),尽管在这里,原因是普遍希望站在胜利的一方。情绪驱动人。虽然我们使用算法交易(即量化交易策略)来抑制情绪化交易,但同样也可以用于利用情绪并将其货币化。趋势跟踪策略旨在利用市场情景获利。...原创 2022-07-04 12:06:03 · 4164 阅读 · 0 评论 -
时间序列的分析和预测
由于预测股票市场的未来股票价格对投资者至关重要,时间序列及其相关概念具有组织数据以进行准确预测的卓越品质。在本文中,让我们阅读时间序列的重要性、分析和预测。在这里,涵盖的一些基本子主题是:简而言之,时间序列是随时间推移的一系列观察结果,通常以固定间隔隔开。为了支持该声明,以下是时间序列的一些示例:来到时间序列分析,它只是意味着识别那些有助于分析时间序列数据的方法。时间序列分析的主要目的是开发能够最好地捕捉或描述时间序列或数据集的模型。此外,这有助于了解数据集的根本原因,以帮助您创建有意义且准确的预测。...转载 2022-07-02 15:51:52 · 4650 阅读 · 1 评论 -
日内因子:开盘缺口探索
股价的日内走势可能蕴藏着一些非常有用的信息,尤其是开盘和收盘的几分钟,潜藏的有效“私有信息”可能性比较大。比如,由于隔夜时段的交易暂停,每个交易日开盘后,市场累积的大量私有信息,将通过交易迅速得到释放,知情交易概率在日内呈现快速下降的态势。原创 2022-01-05 11:52:11 · 273 阅读 · 0 评论 -
量化投资中的因子逻辑是什么?该如何实现?
本文主要是参考华泰多因子系列研报,整理了十一个大类因子的因子逻辑,以及大类因子里一些小因子的描述和平台实现方法原创 2021-12-31 11:33:07 · 13873 阅读 · 0 评论 -
寻找市场中的Alpha-WorldQuant功能的实现(下)
本文介绍Alpha的相关基本概念,以及寻找和检验Alpha的主要流程和方法。在上篇中我们梳理了 WorldQuant经典读本FindingAlphas的概要以及WebSim的使用。作为下篇,我们演示如何通过BigQuant平台可以复现WebSim的因子分析功能,可以只输入因子表达式以及一些相关参数,便能够获取因子分析的相关结果。原创 2021-12-31 11:27:23 · 1819 阅读 · 0 评论 -
寻找市场中的Alpha—WorldQuant的阿尔法设计理念(上)
本文旨在向读者介绍Alpha的相关基本概念,以及寻找和检验Alpha的主要流程和方法。在上篇中我们梳理了 WorldQuant经典读本FindingAlphas的概要以及WebSim的使用,在下篇中我们会介绍相关方法在BigQuant平台上的实现。原创 2021-12-31 11:21:38 · 1421 阅读 · 0 评论 -
Alpha系列——主动投资管理之信息率
主动投资管理——信息率这篇教程的主要目的是介绍主动投资组合管理的一些重要概念,帮助不熟悉这一领域的读者能够了解这个方法论的核心思想和价值。我们先介绍主动投资的概念,然后引入主动投资里最重要的概念——信息率。接着我们分别从主动投资组合最优化框架,以及收益、风险的权衡展开,最后我们通过一个实际的主动投资组合的案例实验来结束讨论。主动投资概念定义之前我们已经介绍了经典的MPT,它的核心思想是市场...原创 2019-01-12 10:35:55 · 1926 阅读 · 0 评论 -
Alpha系列——从MPT到APT
实现平台:BigQuant—人工智能量化投资平台可在文末前往原文一键克隆代码进行进一步研究从MPT到APT前面文章为大家介绍了许多AI量化投资理念,CAPM和APT是现代投资组合理论的基石,在这篇教程中,我们阐述了CML和CAPM的关系,以及APT和CAPM的差异和不同,从而帮助读者在正式理解主动投资管理框架之前,打好理论基础和知识。夏普组合与CML我们在上期的教程中,已经证明了最...原创 2019-01-12 10:51:36 · 1628 阅读 · 0 评论 -
单因子分析模块简介
实现平台:BigQuant—人工智能量化投资平台可在文末前往原文一键克隆 策略进行进一步研究大家在找因子的时候,一定会纠结应该如何去评价一个因子的好坏。我记得华尔街的以为量化大鳄曾说过一句话,在量化交易里,最烂的方法是看回测,最好的方法是特征分析(信息分析)。于是,开发了一个单因子分析的模块,来帮助大家甄别因子的好坏。模块基本分析框架全市场因子暴露因子暴露在我们的分析框架里,...原创 2019-01-12 11:04:28 · 5808 阅读 · 0 评论 -
基于Barra多因子模型的组合权重优化
本篇文章有别于传统的多因子研究,我们并未将重点放在阿尔法因子的挖掘上,而是通过对股票组合的权重优化计算,找到了在市值中性、行业中性、风格因子中性约束下的最优投资组合,以及验证得到的组合权重是否满足了约束条件。结构化多因子风险模型首先对收益率进行简单的线性分解,分解方程中包含四个组成部分:股票收益率、因子暴露、因子收益率和特质因子收益率。那么,第只股票的线性分解如下所示:rj=x1f1+x2f2+x3f3+x4f4⋅⋅⋅⋅xKfK+ujr_j=x_1f_1+x_2f_2+x_3f_3+x_4f_4 ···原创 2020-11-30 18:20:46 · 4388 阅读 · 0 评论 -
WorldQuant 101 Alpha因子构建及因子测试
WorldQuant 101alpha因子构建及因子测试背景介绍根据WorldQuant发表的论文《101 Formulaic Alphas 》 ,其中公式化地给出了101个alpha因子。与传统方法不一样的是,他们根据数据挖掘的方法构建了101个alpha,据说里面80%的因子仍然还行之有效并被运用在实盘项目中。在BigQuant策略研究平台上,可通过表达式快速进行因子构建和数据标注,再也不需要自己手动编写冗长代码。表达式简介因为在机器学习和深度学习中,因子是一个很重要的概念,也被称为特征,开发原创 2020-11-30 17:21:06 · 7853 阅读 · 0 评论 -
日内因子:开盘缺口探索
本文探索股价日内模式中蕴藏的一种选股因子:开盘缺口。股价的日内走势可能蕴藏着一些有用的信息,特别是开盘和收盘的那几分钟,尤其可能潜藏着一些“私有信息”。比如,由于隔夜时段的交易暂停,每个交易日开盘后,市场累积的大量私有信息,将通过交易迅速得到释放,知情交易概率在日内呈现快速下降的态势。开盘缺口因子就致力于抓住上一日收盘和本日开盘之间信息差距。如果开盘价远高于前一日收盘价(跳空高开),说明说明市场情绪激动,股票可能会大幅上涨(突破缺口)或者也会逐步下跌(缺口填补)。本文主要探索上一日收盘价和本日开盘价的差原创 2020-12-02 10:19:37 · 885 阅读 · 2 评论 -
如何写好策略——因子篇(二):因子是否越多越好?
在这个模型里的18个因子,难以衡量每个因子的作用。目前有一套shap包,对黑箱有一定的解释性。这个解释原理比较简单,按照添加该因子的顺序观察结果变化。比如添加该因子前和添加因子后,模型输出结果的变化是否发生了变化,结果对模型的敏感度或者贡献度有什么影响,这个可以评判因子对预测值起到了拉高还是降低的作用,进而计算shap值作为评估。BigQuant以后逐步地把这个功能加进来,形成标准化、模块化的产品功能。同时,可以参考一下相关的研报。例如华泰证券有对黑箱模型的解释: Shap包应用、因子之间的相互作用。但对原创 2020-12-05 16:45:39 · 1481 阅读 · 0 评论