Mask R-CNN图像实例分割实战:训练自己的数据集

Mask R-CNN是一种基于深度学习的图像实例分割方法,可对物体进行目标检测和像素级分割。

本课程将手把手地教大家使用VIA图像标注工具制作自己的数据集,并使用Mask R-CNN训练自己的数据集,从而能开展自己的图像分割应用。

课程链接:https://edu.51cto.com/course/18598.html

本课程有三个项目案例实践:

(1) balloon实例分割 :对图像中的气球做检测和分割

(2) pothole(单类物体)实例分割:对汽车行驶场景中的路坑进行检测和分割

(3) roadscene( 多类物体)实例分割:对汽车行驶场景中的路坑、车、车道线等进行检测和分割

本课程使用Keras版本的Mask R-CNN,在Ubuntu系统上做项目演示。

本课程提供项目的数据集和python程序文件。

下面是使用Mask R-CNN对roadscene进行图像实例分割的测试结果:

Mask R-CNN图像实例分割实战:训练自己的数据集

下图是使用Mask R-CNN对pothole进行单类物体图像实例分割的测试结果:
Mask R-CNN图像实例分割实战:训练自己的数据集

下图是使用Mask R-CNN对roadscene进行多类物体图像实例分割的测试结果:
Mask R-CNN图像实例分割实战:训练自己的数据集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值