Tensorrt加速K-Net笔记

本文详细记录了使用TensorRT将K-Net模型从PyTorch转为ONNX,再优化为FP16以实现加速的过程。在转换过程中遇到FP16精度问题,通过调整resize层参数和识别并处理精度溢出的Foreignnode层,最终成功实现了模型的准确性和速度兼备。在3090上,K-Net的平均速度达到了15ms。
摘要由CSDN通过智能技术生成


自detr问世之后,set prediction和bipartite matching的思想在视觉检测任务上攻城略地,大有完全消灭nms之势,实现真正的end-to-end。其中,实例分割/全景分割的算法如maskformer、K-net的效果很是让人眼馋,那么能否利用tensorrt实现半精度加速,做到实时乃至部署到边缘计算端呢?答案是肯定的。今天,我们就来尝试一把利用tensorrt将K-Net加速到20ms以内的实验。

pytorch转onnx

Knet从pytorch转onnx还是比较简单的,由于基本上没有onnx不支持的层存在,所以除了需要注意提前将代码中的torch.einsum转化成各种torch.matmul,再使用onnxsim简化一下就大功告成了。

onnx转tensorrt

我们直接使用tensorrt自带的trtexec进行onnx到tensorrt fp16的转换。结果tensorrt 7.1失败报错,报了看起来好像是instance norm层的问题。出于不想浪费任何心力在tensorrt老版本bug上的想法,直接把tensorrt升级到最新的 8.2再进行转换,结果很成功。

 [I] Latency: min = 15.2039 ms, max = 19.5652 ms, mean = 15.8112 ms, median = 15.7288 ms, percentile(99%) = 19.3462 ms
 [I] End-to-End Host Latency: min = 15.4692 ms, max = 19.8303 ms, mean = 16.0644 ms, median = 15.9871 ms, percentile(99%) = 19.6008 ms
 [I] Enqueue Time: min = 12.0681 ms, max = 16.5934 ms, mean = 12.4658 ms, median = 12.3762 ms, percentile(99%) = 16.0362 ms
 [I] H2D Latency: min = 1.15027 ms, max = 1.24194 ms, mean = 1.21364 ms, median = 1.21387 ms, percentile(99%) = 1.23401 ms
 [I] GPU Compute Time: min = 11.8992 ms, max = 16.2252 ms, mean = 12.4986 ms, median = 12.4148 ms, percentile(99%) = 16.0308 ms
 [I] D2H Latency: min = 2.09253 ms, max = 2.12573 ms, mean = 2.09892 ms, median = 2.0979 ms, percentile(99%) = 2.1109 ms
 [I] Total Host Walltime: 2.46604 s
 [I] Total GPU Compute Time: 2.46222 s
 [W] * Throughput may be bound by Enqueue Time rather than GPU Compute and the GPU may be under-utilized.
 [W]   If not already in use, --useCudaGraph (utilize CUDA graphs where possible) may increase the throughput.
 [I] Explanations of the performance metrics are printed in the verbose logs.

我们可以看到在3090上,trtexec测试的K-Net平均速度达到了惊人的15ms。

是我转的不对么?FP16精度差是bilinear aglin_corner=False的问题吗

好像这篇博文到这里就结束了?事实并没有,我们使用转换完的K-Net随便找张图片测试并输出结果。。。好像掩码不大对劲?

于是再次将K-Net转换为FP32精度,嗯,看起来掩码结果是正确的,但平均速度只有41ms,和加速前的效果差不多。

在这里插入图片描述

问题到底出在哪里?出于多年转换模型的经验,我把目光放在了resize层,这个层实际上就是pytorch中的上采样层interpolate,2019年TensorRT6.0的时代就有人报告了当resize采用bilinear算法并且aglin_corner=False时的bug

Steps To Reproduce
build_engine build a network with only one layer, IReizeLayer
compare would print the trt result and torch result
got different result with align_corner=False

scale_factor: 2
align_corners: False
torch.Size([1, 2, 2])
build_engine, scale_factor 2 align_corners False
1
<tensorrt.tensorrt.ILayer object at 0x7fb423d4c848> LayerType.RESIZE
[TensorRT] WARNING: Tensor DataType is determined at build time for  tensors not marked as input or output.
[TensorRT] INFO: Detected 1 inputs and 1 output network tensors.
>>>>> test_bilinear2d.trt
compare, scale_factor 2 align_corners False
----------torch output
tensor([[[[-0.2651, -0.1464,  0.0908,  0.2095],
          [-0.0041, -0.0402, -0.1124, -0.1485],
          [ 0.5179,  0.1723, -0.5188, -0.8644],
         [ 0.7789,  0.2786, -0.7220, -1.2223]]]], device='cuda:0')
==========trt output
tensor([[[-0.2651, -0.0278,  0.2095,  0.2095],
         [ 0.2569, -0.1248, -0.5064, -0.5064],
         [ 0.7789, -0.2217, -1.2223, -1.2223],
         [ 0.7789, -0.2217, -1.2223, -1.2223]]], device='cuda:0')

but setting align_corners=True, we got same result

难道这么多年老黄还没把bug修复?于是我将K-Net源码中所有的align_corners=False全都改为了align_corners=True重新生成onnx,这下总该成功了吧。但通向光明的道路总是曲折的,将align_corners改为True后的K-Net在FP32和FP16下的结果仍然不同,表现的和align_corners=False完全一致,难道不是resize层的问题,是我错怪老黄了么?

罪魁祸首,FP16精度溢出

在浏览器搜索栏直接输入‘’‘TensorRT FP16’‘’,出现的第一篇文章就吸引了我。这篇文章提到FP16模型失败的原因:

大概率是模型中某一层的计算FP16因为动态范围和精度不够,导致某个op节点的计算值溢出了。然后牵一发而动全身,整个模型后面的所有层都崩了。

于此同时,我注意到Tensorrt 8自带了模型分析工具polygraphy,其中convert可以将tensorrt模型每层的构建方式保存在一个json中,并可以利用这个json指导新的模型采用完全一致的构建方式。于是一个想法出现在了我的脑海中,我们可以手动修改replay.json中记录的每层精度范围,然后再将此json指导新模型的生成,使精度溢出的层在FP32下进行计算,那问题不就解决了么!那么哪一层是精度溢出的层呢?我们不妨打开K-Net生成的replay.json看一下,除了各种conv、reshape、mul、add、resize和relu层外,有一个Foreignnode层看起来显得很可疑!

        "{ForeignNode[Conv_623...Reshape_1553]}": {
            "implementation": -2147483609,
            "tactic": 0,
            "inputs": [
                [
                    "TensorFormat.LINEAR",
                    "DataType.HALF"
                ],
                [
                    "TensorFormat.LINEAR",
                    "DataType.HALF"
                ],
                [
                    "TensorFormat.LINEAR",
                    "DataType.HALF"
                ],
                [
                    "TensorFormat.LINEAR",
                    "DataType.HALF"
                ],
                [
                    "TensorFormat.LINEAR",
                    "DataType.HALF"
                ],
                [
                    "TensorFormat.LINEAR",
                    "DataType.HALF"
                ]
            ],
            "outputs": [
                [
                    "TensorFormat.LINEAR",
                    "DataType.HALF"
                ],
                [
                    "TensorFormat.LINEAR",
                    "DataType.HALF"
                ]
            ],
            "polygraphy_class": "Algorithm"
        },

在这里插入图片描述

从名字上看,这个Foreignnode像是整合了模型后部的很大一部分区域,那么就决定是你了!把Foreignnode所有的输入和输出全都改为FLOAT,再使用修改后的replay.json重新指导生成tensorrt模型。
我们再进行测试,FP16下的K-Net模型终于得到了正确的结果,并且速度和没修改的FP16模型并没有什么太大的变化,仅仅慢了1ms。

 [I] Latency: min = 16.1807 ms, max = 18.1675 ms, mean = 16.6139 ms, median = 16.5773 ms, percentile(99%) = 17.1135 ms
 [I] End-to-End Host Latency: min = 17.1362 ms, max = 19.1318 ms, mean = 17.5773 ms, median = 17.5393 ms, percentile(99%) = 18.119 ms
 [I] Enqueue Time: min = 12.9159 ms, max = 14.7864 ms, mean = 13.2425 ms, median = 13.205 ms, percentile(99%) = 13.754 ms
 [I] H2D Latency: min = 1.19037 ms, max = 1.26184 ms, mean = 1.23727 ms, median = 1.23682 ms, percentile(99%) = 1.25903 ms
 [I] GPU Compute Time: min = 12.845 ms, max = 14.8296 ms, mean = 13.2777 ms, median = 13.2403 ms, percentile(99%) = 13.826 ms
 [I] D2H Latency: min = 2.09375 ms, max = 2.11121 ms, mean = 2.0989 ms, median = 2.09802 ms, percentile(99%) = 2.10938 ms
 [I] Total Host Walltime: 2.47392 s
 [I] Total GPU Compute Time: 2.46965 s
 [W] * Throughput may be bound by Enqueue Time rather than GPU Compute and the GPU may be under-utilized.
 [W]   If not already in use, --useCudaGraph (utilize CUDA graphs where possible) may increase the throughput.
 [I] Explanations of the performance metrics are printed in the verbose logs.

当然,仅仅靠肉眼观察掩码并不代表着tensorrt加速的模型一定正确,若想保证模型的输出与加速前一样需要直接比较输出结果的相对误差和绝对误差,不过这并非本文的主旨罢了。

——————————————————更新—————————————————————

通过在jetson Xavier的进一步测试,我又发现了Tensorrt的一些问题:Knet在Xavier和3090上的表现并不一致,即使是FP32的Knet模型在Xavier上也可能完全没有输出结果,经过几天的折腾,断定Tensorrt在Xavier和3090中聚合层的方式并不一致,Tensorrt在Xavier中聚合layernorm和multi head attention(尤其是其中的softmax,pow,sqrt等op)的错误方式导致了计算结果完全不对,大概nvidia的人也没想到会有人想在jetson上使用类transformer的模型吧。最终在转Knet的onnx过程中替换所有layernorm为instancenorm,并强制模型后半部分为FP32精度,终于可以在xavier中得以得到正确的结果,速度为150ms。

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值